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This last part of the Unified Guidance addresses statistical methods useful in 
compliance/assessment and corrective action monitoring, where single-sample testing is required against 
a fixed groundwater protection standard [GWPS].  These standards include not only health- or risk-based 
limits, but also those derived from background as a fixed standard.  The full subject of background 
GWPS testing is treated in Section 7.5, but any of the procedures in the following chapters might be 
applied to single-sample background tests.  

The primary tool for both stages of monitoring is the confidence interval. Several varieties of 
confidence intervals are presented in Chapter 21, including confidence intervals around means, 
medians, and upper percentiles for stationary populations, and confidence bands around a trend for cases 
where groundwater concentrations are actively changing. 

Strategies to implement confidence interval tests are discussed in Chapter 22. In particular, the 
focus is on designing tests with reasonable statistical performance in terms of power and per-test false 
positive rates. 

Chapter 7 of Part I provides a discussion of the overall compliance/assessment and corrective 
action monitoring network design.   Program elements such as the appropriate hypothesis structure, 
selecting the appropriate parameter for comparison to a fixed limit GWPS, sampling frequency, 
statistical power, and confidence levels are covered.  These final two chapters present the tests in greater 
detail. 
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Confidence intervals are the recommended general statistical strategy in compliance/assessment or 
corrective action monitoring.  Groundwater monitoring data must typically be compared to a fixed 
numerical limit set as a GWPS. In compliance/assessment, the comparison is made to determine whether 
groundwater concentrations have increased above the compliance standard. In corrective action, the test 
determines whether concentrations have decreased below a clean-up criterion or compliance level. In 
compliance/assessment monitoring, the lower confidence limit [LCL] is of primary interest, while the 
upper confidence limit [UCL] is most important in corrective action. For single-sample background 
GWPS testing, the hypothesis structures are the same as for fixed-limit health-based standards.   Where a 
GWPS is based on two- or multiple sample testing, a somewhat different hypothesis structure is used 
(Section 7.5) and detection monitoring test procedures in Part III are applicable.   

General strategies for using confidence intervals in compliance/assessment or corrective action 
monitoring are presented in Chapter 7, including discussion of how regulatory standards should be 
matched to particular statistical parameters (e.g., mean or upper percentile). More specific strategies and 
examples are detailed in Chapter 22. In this chapter, basic algorithms and equations for each type of 
confidence interval are described, along with an example of the calculations involved. 

 

���� 
�����������������������������

Confidence intervals are designed to estimate statistical characteristics of some parameter of a 
sampled population. Parametric confidence intervals do this for known distributional models, e.g., 
normal, lognormal, gamma, Weibull, etc. Given a statistical parameter of interest such as the population 
mean (�), the lower and upper limits of a confidence interval define the most probable concentration 
range in which the true parameter ought to lie. 

Like any estimate, the true parameter may not be located within the confidence interval. The 
frequency with which this error tends to occur (based on repeated confidence intervals on different 
samples of the same sample size and from the same population) is denoted α, while its complement (1–
α) is known as the confidence level. The confidence level represents the percentage of cases where a 
confidence interval constructed according to a fixed algorithm or equation will actually contain its 
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intended target, e.g., the population mean.  Section 7.2 discusses the difference between one- and two-
sided confidence intervals and how the α error is assigned. 

A point worth clarifying is the distinction between α as the complement of the confidence level 
when constructing a confidence interval and the significance level (α) used in hypothesis testing. 
Confidence intervals are often used strictly for estimation of population quantities. In that case, no test is 
performed, so α does not represent a false positive rate.  Rather, it is simply the fraction of similar 
intervals that do not contain their intended target. 

The Unified Guidance focuses on confidence interval limits compared to a fixed standard as a 
formal test procedure. In this case, the complement (α) of the confidence level used to generate the 
confidence interval is equivalent to the significance level (α) of the test.  This assumes that the true 
population parameter under the null hypothesis is no greater than the standard in compliance/assessment 
monitoring or not less than the standard in corrective action.1  

The parametric confidence intervals presented in the Unified Guidance share some common 
statistical assumptions. The most basic is that measurements used to construct a confidence interval be 
independent and identically distributed [i.i.d.]. Meeting this assumption requires that there be no outliers 
(Chapter 12), a stationary mean and variance over the period during which observations are collected 
(Chapters 3 and 14), and no autocorrelation between successive sampling events (Chapter 14). In 
particular, sampling events should be spaced far enough apart so that approximate statistical 
independence can be assumed (at many sites, observations should not be sampled more often than 
quarterly). Sample data should also be examined for trends. The mean is not stationary under a 
significant trend, as assumed in applying the other methods of this section.  An apparent trend may need 
to be handled by computing a confidence band around the trend line (Section 21.3).   

Another common assumption is that the sample data are either normal in distribution or can be 
normalized via a transformation (Chapter 10). Normality can be difficult to check if the sample contains 
a significant number of left-censored measurements (i.e., non-detects). The basic options for censored 
samples are presented in Chapter 15. If the non-detect percentage is no more than 10-15%, it may be 
possible to assess normality by first substituting one-half of the reporting limit [RL] for each non-detect. 
For higher non-detect percentages up to 50%, the Unified Guidance recommends computing a censored 
probability plot using either the Kaplan-Meier or Robust Regression on Order Statistics [Robust ROS] 
techniques (both in Chapter 15).  

If a censored probability plot suggests that the sample (or some transformation of the sample) is 
normal, either Kaplan-Meier or Robust ROS can be used to construct estimates of the mean ( µ̂ ) and 
standard deviation (σ̂ ) adjusted for the presence of non-detects. These estimates should be used in place 
of the sample mean ( x ) and standard deviation (s) in the parametric equations below. 

 

                                                 

1  Technically, α represents the maximum possible false positive rate associated with the composite null hypothesis H0: µ � 
GWPS or H0: µ � GWPS. 
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When compliance point data is to be compared to a fixed standard (e.g., a maximum concentration 
limit [MCL]) and the standard in question is interpreted to represent an average or true mean 
concentration, a confidence interval around the mean is the method of statistical choice. A confidence 
interval around the mean is designed to estimate the true average of the underlying population, while at 
the same time accounting for variability in the sample data. 
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Confidence intervals around the mean of a normal distribution should only be constructed if the 
data are approximately normal or at least are reasonably symmetric (i.e., the skewness coefficient is 
close to zero).  An inaccurate confidence interval is likely to result if the sample data are highly non-
normal, particularly for right-skewed distributions. If the observations are better fit by a lognormal 
distribution, special equations or methods need to be used to construct an accurate confidence interval on 
the arithmetic mean with a specified level of confidence (Section 21.1.3).  Therefore, checking for 
normality is an important first step. 

A confidence interval should not be constructed with less than 4 measurements per compliance 
well, and preferably 8 or more. The equation for a normal-based confidence interval around the mean 
involves estimating the population standard deviation via the sample standard deviation (s).  This 
estimate can often be imprecise using a small sample size (e.g., n � 4).  The equation also involves a 
Student’s t-quantile based on n–1 degrees of freedom [df], where n equals the sample size.  The t-
quantile is large for small n, leading to a much wider confidence interval than would occur with a larger 
sample size.  For a 99% confidence level, the appropriate t-quantile would be t = 31.82 for n = 2, t = 
4.54 for n = 4, and t = 3.00 for n = 8. 

This last consideration is important since statistically significant evidence of a violation during 
compliance/assessment or success during corrective action is indicated only when the entire confidence 
interval is to one side of the standard (i.e., it does not straddle the fixed standard; see Chapter 7). For a 
small sample size, the confidence interval may be so wide that a statistical difference is unlikely to be 
identified. This can happen even if the true mean groundwater concentration is different from the 
compliance or clean-up standard, due to the statistical uncertainty associated with the small number of 
observations. More specific recommendations on appropriate sample sizes are presented in Chapter 22, 
where the statistical power of the confidence interval tests is explored. 
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Step 1. Check the basic statistical assumptions of the sample as discussed above.  Assuming a normal 
distributional model is acceptable, calculate the sample mean ( x ) and standard deviation (s). 

Step 2. Given a sample of size n and the desired level of confidence (1–α), for each compliance well 
calculate either the lower confidence limit (for compliance/assessment monitoring) with the 
equation: 
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LCL1−α = x − t1−α ,n−1

s

n
 [21.1] 

 or the upper confidence limit (for corrective action) with the equation: 

 
  
UCL1−α = x + t1−α ,n−1

s

n
 [21.2] 

 where t1–α,n–1 is obtained from a Student’s t-table with (n–1) degrees of freedom (Table 16-1 
in Appendix D).  To construct a two-sided interval with overall confidence level equal to (1–
�), substitute �/2 for � in the above equations. 

Step 3. Compare the limit calculated in Step 2 to the fixed compliance or clean-up standard (e.g., the 
MCL or alternate concentration limit [ACL]. For compliance/assessment monitoring, the LCL 
in equation [21.1] should be used to compute the test. For corrective action, the UCL in 
equation [21.2] should be used instead. 
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The table below lists concentrations of the pesticide Aldicarb in three compliance wells. For 
illustrative purposes, the health-based standard in compliance monitoring for Aldicarb has been set to 7 
ppb. Determine at the α = 5% significance level whether or not any of the wells should be flagged as 
being out of compliance. 
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Step 1. First test the data for non-normality and/or significant skewness. Based on four samples per 
well, the skewness coefficients and Shapiro-Wilk statistics have been computed and are listed 
above. None of the skewness coefficients are significantly different from zero. In addition, the 
α = .10 critical point for the Shapiro-Wilk test with n = 4 (as presented in Chapter 10) is 
0.792, less than each of the Shapiro-Wilk statistics; consequently, there is no significant 
evidence of non-normality. Construct a normal-based confidence interval around the mean. 

Step 2. Calculate the sample mean and standard deviation of the Aldicarb concentrations for each 
compliance well. These statistics are listed above. 
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Step 3. Since α = 0.05, the confidence level must be set to (1–α) = 0.95. Obtain the upper 95th 
percentile of the t-distribution with (n–1) = 3 degrees of freedom from Table 16-1 in 
Appendix D, namely t.95,3 = 2.353. Then calculate the lower confidence limit [LCL] for each 
well’s mean concentration, using equation [21.1]: 

 

  

Well 1: LCL.95 = 23.10 − 2.353 × 4.93( ) 4 = 17.30 ppb

Well 2: LCL.95 = 24.65 − 2.353× 2.28( ) 4 = 21.97 ppb

Well 3: LCL.95 = 4.52 − 2.353 × 2.10( ) 4 = 2.05 ppb

 

Step 4. Compare each LCL to the compliance standard of 7 ppb. The LCLs for Well 1 and Well 2 lie 
above 7 ppb, indicating that the mean concentration of Aldicarb in both of these wells 
significantly exceeds the compliance standard. However, the LCL for Well 3 is below 7 ppb. 
providing insufficient evidence at the α = 0.05 level that the mean in Well 3 is out of 
compliance. � 
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For many groundwater monitoring constituents, neither the assumption of normality nor 
approximate symmetry holds for the original concentration data. Often the underlying population is 
heavily right-skewed, characterized by a majority of lower level concentrations combined with a long 
right-hand tail of infrequent but extreme values.  A model such as the lognormal distribution is 
commonly used to analyze such data. 

The lognormal is traditionally designated by the notation Λ(µ, σ) (Aitchison and Brown, 1976), 
where µ and σ denote parameters controlling the location and scale of the population.  Typically 
designated as N(µ, σ), a normal distribution also has parameters µ and σ which denote the true mean and 
standard deviation.  These two parameters play different roles in lognormal distributions.   The key 
distinction is between the arithmetic domain (or the original measurement scale of the data) and the 
logarithmic domain.  The latter denotes the mathematical space following a logarithmic transformation. 
Transformed lognormal data are normally-distributed in the logarithmic domain.  In this new domain, µ 
represents the true mean of the log-transformed measurements--- that is, the log-mean. Likewise, σ 
represents the true standard deviation of the log-transformed values or the log-standard deviation. 

A common misperception is to assume that a standard equation for a normal-based confidence 
interval can be applied to log-transformed data, with the interval endpoints then back-transformed (i.e., 
exponentiated) to the arithmetic domain to get a confidence interval around the lognormal arithmetic 
mean. Invariably, such an interval will underestimate the true mean. The Student t- confidence interval 
applies to a geometric mean of the lognormal population when back-transformed, rather than the higher-
valued arithmetic mean. The reason is that the sample log-mean gives an estimate of the lognormal 
parameter µ. When this estimate is back-transformed to the arithmetic domain, one has an estimate of 
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exp(µ) — the lognormal geometric mean — not an estimate of the lognormal arithmetic mean, which is 
expressed as exp(µ + .5σ2). 

Although a confidence interval around the lognormal geometric mean is not an accurate estimate of 
the arithmetic mean, there are instances where such an interval may be helpful.  While many GWPSs are 
interpreted to represent long-term arithmetic averages, some (as detailed in Chapter 7) can better 
represent medians or percentiles of the underlying distribution. Because the lognormal geometric mean 
is equivalent to the median, a geometric mean may in some cases be a better statistical parameter of 
comparison than the lognormal arithmetic mean. Furthermore, when the lognormal coefficient of 
variation is large, the arithmetic mean is substantially larger than the geometric mean, mostly due to 
infrequent but extreme individual measurements. The bulk of individual observations are located much 
closer to the geometric mean. It may be that a comparison of the GWPS to the geometric mean rather 
than to the arithmetic mean will provide a more reasonable test of long-term concentration levels. 

Special equations or computational methods are used to construct an accurate confidence interval 
with a specified level of confidence (Section 21.1.3) when an estimate of the arithmetic mean is needed 
and the observations are approximately normal. There is another factor to consider when estimating an 
upper confidence limit on the lognormal arithmetic mean using Land’s procedure (described in Section 
21.1.3) or other possible procedures (see for instance Singh et al., 1997).  When used with highly 
variable data, it can lead to severely-biased, high estimates of the confidence limit.  This can make it 
very difficult to evaluate the success of corrective action measures. 

In these cases, precise parametric estimation of the arithmetic mean may have to be foregone in 
favor of an alternate statistical procedure. One such alternative is a non-parametric confidence interval 
around the median (Section 21.2). Another alternative when the sample is approximately lognormal is 
an estimate around the geometric mean which is equivalent to the population median. A third more 
computationally intensive option is a bootstrap confidence interval around the lognormal arithmetic 
mean (see discussion in Section 21.1.3). Unlike the first two options, this last alternative allows a direct 
estimate of the arithmetic mean. 
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Confidence intervals around the geometric mean of a lognormal distribution should only be 
constructed if the log-transformed data are approximately normal or at least reasonably symmetric (i.e., 
the skewness coefficient in the logarithmic domain is close to zero). The methods of Chapter 10 can be 
used to test normality of the log-transformed values. If the log-transformed sample contains non-detects, 
normality on the log-scale should be assessed using a censored probability plot.  Adjusted estimates of 
the mean and standard deviation on the log-scale can then be substituted for the log-mean ( y ) and log-
standard deviation (sy) in the equations below.  Like a normal arithmetic mean, a confidence interval 
around the lognormal geometric mean should not be constructed without a minimum of 4 measurements 
per compliance well, and preferably with 8 or more. 
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Step 1. Take the logarithm of each measurement, denoted as yi, and check the n log-transformed 
values for normality. If the log-transformed measurements are approximately normal, calculate 
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the log-mean ( y ) and log-standard deviation (sy). If the normal model is rejected, consider 
instead a non-parametric confidence interval (Section 21.2). 

Step 2. Given the desired level of confidence (1–α), calculate either the LCL (for 
compliance/assessment monitoring) with the equation: 

 
  
LCL1−α = exp y − t1−α ,n−1

sy

n

�

�
�

�

�
�  [21.3] 

 or the UCL (for corrective action) with the equation: 

 
  
UCL1−α = exp y + t1−α ,n−1

sy

n

�

�
�

�

�
�  [21.4] 

 where t1–α,n–1 is obtained from a Student’s t-table with (n–1) degrees of freedom (Table 16-1 
in Appendix D).  In order to construct a two-sided interval with  the overall confidence level 
equal to (1–�), substitute �/2 for � in the above equations. 

Step 3. Compare the limits calculated in Step 2 to the fixed compliance or clean-up standard (e.g., the 
MCL or ACL). For compliance/assessment, use the LCL in equation [21.3]. For corrective 
action, use the UCL in equation [21.4]. 

 Note in either case that the regulatory authority will have to approve the use of the geometric 
mean as a reasonable basis of comparison against the compliance standard. In some cases, 
there may be few other statistical options. However, stakeholders should understand that the 
geometric and arithmetic means estimate two distinct statistical characteristics of the 
underlying lognormal population. 
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Suppose the following 8 sample measurements of benzene (ppb) have been collected at a landfill 
that previously handled smelter waste and is now undergoing remediation efforts. Determine whether or 
not there is statistically significant evidence at the α = 0.05 significance level that the true geometric 
mean benzene concentration has fallen below the permitted MCL of 5 ppb. 
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Step 1. To estimate an upper confidence bound on the geometric mean benzene concentration with 
95% confidence, first test the skewness and normality of the data set. Since the one non-detect 
concentration is unknown but presumably between 0 ppb and the RL of 0.5 ppb, a reasonable 
compromise is to impute this value at 0.25 ppb, half the RL. The skewness is computed as γ1 = 
2.21, a value too high to suggest the data are normal. In addition, a Shapiro-Wilk test statistic 
on the raw measurements works out to SW = 0.521, failing an assumption of normality at far 
below a significance level of α = 0.01. 

 On the other hand, transforming the data via natural logarithms gives a smaller skewness 
coefficient of γ1 = 0.90 and a Shapiro-Wilk statistic of W = 0.896. Because these values are 
consistent with normality on the log-scale (the critical point for the Shapiro-Wilk test with n = 
8 and α = 0.10 is 0.818), the data set should be treated as lognormal for estimation purposes. 
As a consequence, equation [21.4] can be used to construct a one-sided UCL on the geometric 
mean. 

Step 2. Compute the sample log-mean and log-standard deviation. This gives  y  = 0.2037 log(ppb) 
and sy = 1.2575 log(ppb). 

Step 3. Apply the log-mean and log-standard deviation into equation [21.4] for a UCL with α = .05, n 
= 8, and 7 degrees of freedom. This gives an estimated limit of: 

 
  
UCL.95 = exp y + t.95,7

sy

8

�

�
�

�

�
� = exp .2037 + 1.895 × .4446( )= 2.847 ppb  

Step 4. Compare the UCL to the MCL of 5 ppb. Since the limit is less than the fixed standard, there is 
statistically significant evidence that the benzene geometric mean, and consequently, the 
median benzene concentration, is less than 5 ppb. However, this calculation does not show 
that the benzene arithmetic mean is less than the MCL. Extreme individual benzene 
measurements could show up with enough regularity to cause the arithmetic mean to be higher 
than 5 ppb. � 
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Estimation of a lognormal arithmetic mean is not completely straightforward. As discussed in 
Section 21.1.2, applying standard equations for normal-based confidence limits around the mean to log-
transformed measurements and then exponentiating the limits, results in confidence intervals that are 
invariably underestimate the arithmetic mean. 

Inferences on arithmetic means for certain kinds of skewed populations can be made either exactly 
or approximately through the use of special techniques. In particular, if a confidence interval on the 
arithmetic mean is desired, Land (1971; 1975) developed an exact technique along with extensive tables 
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for implementing it when the underlying population is lognormal. Land also developed a more 
complicated approximate technique (for a full description and examples see EPA, 1997) when the 
population can be transformed to normality via any other increasing, 1-1, and twice differentiable 
transformation (e.g., square, square root, cube root, etc.). 

Although the core of Land’s procedure is a correction for the so-called ‘transformation bias’ that 
occurs when making back-transforming estimates from the logarithmic domain to the raw concentration 
domain, it can produce unacceptable results, particularly with UCLs. The Unified Guidance advises 
caution when applying Land’s procedure, particularly when the lognormal population has a high 
coefficient of variation. In those cases, the user may want to consider alternate techniques, such as those 
discussed in Singh, et al (1997 and 1999). One option is to use EPA’s free-of-charge Pro-UCL software 
Version 4.0 (www.epa.gov/esd/tsc/software.htm). It computes a variety of upper confidence limits, 
including a bootstrap confidence interval around the arithmetic mean. This technique can be applied to 
lognormal data to get a direct, non-parametric UCL that tends to be less biased and to give less extreme 
results than Land’s procedure. 

For cases or sample sizes not covered by Tables 21-1 through 21-8 in Appendix D when using 
Land’s procedure, Gibbons and Coleman (2001) describe a method of approximating the necessary H-
factors. The same authors review other alternate parametric methods for computing UCLs. 
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Confidence intervals around the arithmetic mean of a lognormal distribution should be constructed 
only if the data pass a test of approximate normality on the log-scale. While many groundwater and 
water quality populations tend to follow the lognormal distribution, the data should first be tested for 
normality on the original concentration scale. If such a test fails, the sample can be log-transformed and 
re-tested. If the log-transformed sample contains non-detects, normality on the log-scale should be 
assessed using a censored probability plot (Chapter 15). If a lognormal model is tenable, adjusted 
estimates of the mean and standard deviation on the log-scale can be substituted for the log-mean ( y ) 
and log-standard deviation (sy) in the equations below. 

As with normal-based confidence intervals, the confidence interval here should not be constructed 
with fewer than 4 measurements per compliance well, and preferably with 8 or more. The reasons are 
similar: the equation for a lognormal-based confidence interval around the arithmetic mean depends on 
the sample log-standard deviation (sy), used as an estimate of the underlying log-scale population 
standard deviation. This estimate can be quite imprecise when fewer than 4 to 8 observations are used.  
A special factor (H) was developed by Land to account for variability in a skewed population. These 
factors are larger for smaller samples sizes, and need to be exponentiated to estimate the final confidence 
limits (see below). Consequently there is a significant penalty associated with estimating the arithmetic 
mean using a small sample size, occasionally seen in remarkably wide confidence limits. The effect is 
especially noticeable when computing an UCL for corrective action monitoring. 
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Step 1. Test the log-tranformed sample for normality. If the lognormal model provides a reasonable 
fit, denote the log-transformed measurements by yi and move to Step 2. 
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Step 2. Compute the sample log-mean ( y ) and log-standard deviation (sy). 

Step 3. Obtain the correct bias-correction factor(s) (Hα) from Land’s (1975) tables (Tables 21-1 
through 21-8 in Appendix D), where the correct factor depends on the sample size (n), the 
sample log-standard deviation (sy), and the desired confidence level (1–α). 

Step 4. Plug these factors into one of the equations given below for the LCL or UCL (depending on 
whether the comparison applies to compliance/assessment monitoring or to corrective action). 
Note that to construct a two-sided interval with an overall confidence level of (1–α), the 
equations should be applied by substituting α/2 for α. 

 
  
LCL1−α = exp y + .5sy

2 +
sy Hα

n − 1

�

�
�

�

�
�  [21.5] 

 
  
UCL1−α = exp y + .5sy

2 +
sy H1−α

n − 1

�

�
�

�

�
�  [21.6] 

Step 5. Compare the confidence limit computed in Step 4 to the fixed compliance or clean-up 
standard. In compliance/assessment monitoring, use the LCL of equation [21.5]. In corrective 
action, use equation [21.6] for the UCL. 

� ��%��
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Determine whether the benzene concentrations of Example 21-2 indicate that the benzene 
arithmetic mean is below the permitted MCL of 5 ppb at the α = 0.05 significance level. 

� ��������

Step 1. From Example 21-2, the benzene data were found to fail a test of normality, but passed a test 
of lognormality (i.e., they were approximately normal on the log-scale). As a consequence, 
Land’s equation in [21.6] should be used to construct a one-sided UCL on the arithmetic 
mean. 

Step 2. Compute the log-mean and log-standard deviation from the log-scale data. This gives  y  = 
0.2037 log(ppb) and sy = 1.2575 log(ppb). 

Step 3. Using Table 21-6 in Appendix D, pick the appropriate H-factor for estimating confidence 
limits around a lognormal arithmetic mean, noting that to achieve 95% confidence for a one-
sided UCL, one must use (1–α) = 0.95. With a sample size of n = 8 and a standard deviation 
on the log-scale of 1.2575 log(ppb), H.95 =  4.069. 

Step 4. Plug these values along with the log-mean of 0.2037 log(ppb) into equation [21.6] for the 
UCL. This leads to a 95% one-sided confidence limit equal to: 
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UCL.95 = exp .2037 + .5 1.5813( )+
1.2575( ) 4.069( )

7

�

�
�

�

�
� = 18.7 ppb  

Step 5. Compare the UCL against the MCL of 5 ppb. Since the UCL is greater than the MCL, 
evidence is not sufficient at the 5% significance level to conclude that the true benzene 
arithmetic mean concentration is now below the MCL. This conclusion holds despite the fact 
that all but one of the benzene measurements is less than than 5 ppb. In lognormal 
populations, it is not uncommon to see one or two seemingly extreme measurements coupled 
with a majority of much lower concentrations. Since these extreme measurements help 
determine the location of the arithmetic mean, it is not unreasonable to expect that the true 
mean might be larger than 5 ppb. 

The contrast in this result to Example 21-2 is noteworthy. In that case, the UCL on the 
geometric mean was only 2.85 ppb. The estimated lognormal coefficient of variation with 
these data (Chapters 3 and 10) is CV = 1.965, somewhat on the high side. It is no surprise that 
results for the arithmetic and geometric means on the same sample are rather different. Neither 
estimator is necessarily invalid, but a decision needs to be made as to whether the MCL for 
benzene in this setting should be better compared to an arithmetic mean or to a geometric 
mean/ median for lognormal distributions. � 
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Although most MCLs and ACLs appear to represent arithmetic or long-term averages (Chapter 7), 
they can also be interpreted as standards not to be exceeded with any regularity.  Other fixed standards 
like nitrate/nitrite attempt to limit short-term risks and thus represent upper percentiles instead of means. 
In these cases, the appropriate confidence interval is one built around a specific upper percentile. 

The particular upper percentile chosen will depend on what the fixed compliance standard 
represents or is intended to represent. If the standard is a concentration that represents the 90th 
percentile, the confidence interval should be built around the upper 90th percentile. If the standard is 
meant to be a maximum, ‘not to be exceeded,’ concentration, a slightly different strategy should be used. 
Since there is no maximum value associated with continuous distributions like normal and lognormal, it 
is not possible to construct a confidence interval around the population maximum. Instead, one must 
settle for a confidence interval around a sufficiently high percentile, one that will exceed nearly all of the 
population measurements. Possible choices are the upper 90th to 95th percentile. By estimating the 
location of these percentiles, one needs to determine whether a sufficiently small fraction (e.g., at most 1 
in 10 or 1 in 20) of the possible measurements will ever exceed the standard. For even greater protection 
against exceedances, the upper 99th percentile could be selected, implying that at most 1 in 100 
measurements would ever exceed the standard.  But as noted in Chapter 7, selection of very high 
percentiles using non-parametric tests can make it extremely difficult to demonstrate corrective action 
success.  
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The equations for constructing parametric confidence intervals around an upper percentile assume 
that the data are normally distributed, at least approximately. If the data can be normalized via a 
transformation, the observations should first be transformed before computing the confidence interval. 
Unlike confidence intervals around an arithmetic mean for transformed data, no special equations are 
required to construct similar intervals around an upper percentile. The same equations used for normal 
data can be applied to data in the transformed domain. The only additional step is that the confidence 
interval limits must be back-transformed prior to comparing them against the fixed standard. 

The confidence interval presented here should not be constructed with fewer than 4 measurements 
per compliance well, and preferably with 8 or more. Too small a sample size leads to imprecise 
estimates of the sample standard deviation (s). Another reason is that the confidence interval equation 
involves a special multiplier �, which depends on both the desired confidence level (1–α) and the sample 
size (n). When n is quite small, the � multiplier is much greater.  This leads to a much wider confidence 
interval than that obtained with a larger n, and therefore much greater statistical uncertainty. For 
example, at a confidence level of 95%, the appropriate � multiplier for an upper one-sided limit on the 
95th percentile is �  = 52.559 when n = 2, �  = 6.602 when n = 4, and �  = 3.640 when n = 8. 

When determining the � factor(s) needed for a confidence interval around an upper percentile, it 
should be noted that unlike the symmetric Student’s t-distribution, separate � factors need to be 
determined for the LCL and UCL. Since an upper percentile like the 95th is generally larger than the 
population mean, the equations for both the lower (i.e., LCL) and upper (i.e., UCL) limits involve 
adding a multiple of the standard deviation to the sample mean. The only difference is that a smaller 
multiple �LCL  is used for the LCL, while a larger �UCL  is used for the upper confidence limit.  For certain 
choices of n, P and 1-�, the multiple �LCL can even be negative. 

� 
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Step 1. Test the raw data for normality. If approximately normal, construct the interval on the original 
measurements. If the data can be normalized via a transformation, construct the interval on the 
transformed values. 

Step 2. For a normal sample, compute the sample mean ( x ) and standard deviation (s). If the data 
have been transformed, compute the mean and standard deviation of the transformed 
measurements. 

Step 3. Given the percentile (P) to be estimated, sample size (n), and the desired confidence level 
(1−α), use Tables 21-9 and 21-10 in Appendix D to determine the � factor(s) needed to 
construct the appropriate one-sided or two-sided interval. A one-sided LCL is then computed 
with the equation: 

 
  
LCL1−α = x + s ⋅τ P;n,α( ) [21.7] 

 where �(P; n, α) is the lower α factor for the Pth percentile given n sample measurements. A 
one-sided UCL is given similarly by the equation: 
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UCL1−α = x + s ⋅τ P;n,1− α( ) [21.8] 

 Finally, a two-sided confidence interval is computed by the pair of equations for the LCL and 
UCL: 

 
  
LCL1−α 2 = x + s ⋅τ P;n,α 2( ) [21.9] 

 
  
UCL1−α 2 = x + s ⋅τ P;n,1− α 2( ) [21.10] 

Step 4. If the data have been transformed, the equations of Step 3 would be used but with two 
changes: 1) the mean and standard deviation of the transformed values are substituted for 
 x and s; and 2) the resulting limits back-transformed to get final confidence limits in the 
concentration domain. If a logarithmic transformation has been employed, the log-mean and 
log-standard deviation would be substituted for the sample mean and standard deviation. The 
resulting limit(s) must be exponentiated to get the final confidence limits, as in the equations 
below: 

 
  
LCL1−α = exp y + sy ⋅τ P;n,α( )�

�
	

  [21.11] 

 
  
UCL1−α = exp y + sy ⋅τ P;n,1− α( )�

�
	

  [21.12] 

Step 5. Compare the confidence limit(s) computed in Step 3 (or Step 4) versus the fixed compliance 
or clean-up standard. In compliance/assessment, use the LCL of equation [21.7]. In corrective 
action, use  equation [21.8] for the UCL. 

 Note that although the above equations differentiate between the �-error used with the LCL 
and 1-� for the UCL, Tables 21-9 and 21-10 in Appendix D are constructed identically.   The 
�-error is represented by its confidence complement 1-� in Table 21-10 of Appendix D. 
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Assume that a facility permit has established an ACL of 30 ppb that should not be exceeded more 
than 5% of the time. Use the Aldicarb concentrations and diagnostic statistical information from 
Example 21-1 to evaluate data from the three compliance wells.  Determine whether any of the wells 
should be flagged as being out of compliance.   

��������

Step 1. From Example 21-1, all of the wells pass a normality test. Use the sample mean and           
standard deviation for each compliance well, from the tabular information in Example 21-1.  

Step 2. Select the correct � factor from Table 21-10 of Appendix D to construct a 99% LCL on the 
upper 95th percentile. The upper 95th percentile is needed because the permitted ACL cannot 
be exceeded more than 5% of the time, implying that 95% of all the Aldicarb measurements 
should fall below the fixed standard. With n = 4 observations per well, this leads to � (P; n, α) 
= � (.95; 4, .01) = 0.443. 



	�������� ���	!��������������"�#$� �����������������

� � � ���������	�����$�

Step 3. Compute the LCL for each well as follows using equation [21.7]: 

( )( )
( )( )

( )( ) ppbLCLWell

ppbLCLWell

ppbLCLWell

45.510.2443.052.4:3

66.2528.2443.065.24:2

28.2593.4443.010.23:1

99.

99.

99.

=+=
=+=
=+=

  

Step 4. Compare each LCL against the ACL of 30 ppm. Since each well LCL is less than the ACL, 
there is insufficient statistical evidence that the upper 95th percentile of the Aldicarb 
distribution exceeds the fixed standard. Consequently, there is no conclusive evidence that 
more than 5% of the Aldicarb concentrations will exceed the ACL. 

 If the site were in corrective action instead of compliance/assessment monitoring, UCLs 
around the 95th percentile would be needed instead of LCLs. In that case, with n = 4 
observations per well, � (P; n, 1–α) = � (.95; 4, .99) = 9.083 from Table 21-9 of Appendix D. 
Then, the respective well UCLs would be: 

   

( )( )
( )( )

( )( ) ppbUCLWell

ppbUCLWell

ppbUCLWell

59.2310.2083.952.4:3

36.4528.2083.965.24:2

88.6793.4083.910.23:1

99.

99.

99.

=+=
=+=
=+=

  

 In this case, two of the three wells would not meet the corrective action limit of 30 ppb. � 
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A non-parametric confidence interval should be considered when a sample is non-normal and 
cannot be normalized, perhaps due to a significant fraction of non-detects.  Non-parametric confidence 
interval endpoints are generally chosen as order statistics of the sample data. The specific order statistics 
selected will depend on the sample size (n), the desired confidence level (1–α), and the population 
characteristic being estimated. 

Since the data are not assumed to follow a particular distribution, it is generally not possible to 
construct a confidence interval around the population mean.  One fairly rare exception would be if it 
were already known that the distribution is symmetric (where the mean is also the median). Sample 
order statistics represent, by definition, concentration levels exceeded by a certain number and hence a 
fraction of the sample values. They are excellent estimators of the percentiles of a distribution, but not 
of quantities like the arithmetic mean.  The latter entails summing the data values and averaging the 
result.  In positively-skewed populations, not only is the arithmetic mean greater than the median, it also 
may not correspond to any particular percentile. 

Non-parametric confidence intervals can be developed either around a measure of the center of the 
population (i.e., the population median or 50th percentile) or around an upper or lower percentile (e.g., 
the upper 90th). The choice of percentile affects which order statistics are selected as interval endpoints.  
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The sample median is generally estimated using a smaller order statistic than that used for an upper 95th 
percentile. 

Despite the distinction between non-parametric confidence intervals around the median and similar 
intervals around an upper or lower percentile, the mathematical algorithm used to construct both types is 
essentially identical. Given an unknown P × 100th percentile of interest (where P is between 0 and 1) 
and a sample of n concentration measurements, the probability that any randomly selected measurement 
will be less than the P × 100th percentile is simply P.  Then the probability that the measurement will 
exceed the P × 100th percentile is (1–P).  Hence the number of sample values falling below the P × 
100th percentile out of a set of n should follow a binomial distribution with parameters n and success 
probability P, where ‘success’ is defined as the event that a sample measurement is below the P × 100th 
percentile. 

Because of this connection, the binomial distribution can be used to determine the probability that 
the interval formed by a given pair of order statistics will contain the percentile of interest. This kind of 
probability calculation makes repeated use of the cumulative binomial distribution, often denoted 
Bin(x;n,p).  It represents the probability of x or fewer successes occurring in n trials with success 
probability p. The computational equation for this expression2 can be written as: 

 
  
Bin x;n, p( )=

n

i

�

��
�

��i=0

x

� p i 1− p( )n− i
 [21.13] 

To make statistical inferences about the P × 100th percentile, P (expressed as a fraction) would be 
substituted for p in equation [21.13]. It can be seen why the same basic algorithm applies both to 
confidence intervals around the median and around upper percentiles like the 95th. If an interval around 
the median is desired, one would set P = 0.50.  For an interval needed around the upper 95th percentile, 
one would set P = 0.95 and perform similar calculations. 

When constructing non-parametric confidence intervals, the type of confidence interval needs to be 
matched against the kind of fixed standard to which it will be compared. Since the arithmetic mean 
cannot be estimated directly, a confidence interval around the median should be used for those cases 
where the compliance standard represents an average. Some fixed standards can, of course, be directly 
interpreted as median concentration levels, but even for those standards representing arithmetic averages, 
the confidence interval on the median will give the ‘next best’ comparison when a non-parametric 
method is used. 

The interpretation of a confidence interval on the median is similar to that of a parametric 
confidence interval around the mean. In compliance/assessment monitoring, if the LCL with confidence 
level (1–�) exceeds the compliance standard, there is statistically significant evidence that the true 

                                                 

2   The mathematical expression ��
�

�
��
�

�

i

n
   refers to the combination of n events taken i at a time.   It can be calculated as: 

n!/(i!×[n-i]!), where  n! = {n × (n-1) ×… × 2 × 1}.   By convention, 0! = 1.  
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population median is higher than the standard. In corrective action monitoring, if the UCL is below the 
clean-up standard, one can conclude that the true population median is less than the standard with α-
level significance. 

� ��#������������������
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Because a non-parametric confidence interval does not assume a specific distributional form for 
the underlying population, there is no need to fit a probability model to the data. If a significant portion 
of the data are non-detect, it may be impossible to adequately fit such a model.. The non-parametric 
confidence interval method only requires the ability to rank the sample data values and pick out selected 
order statistics as the interval endpoints. Unfortunately, this ease of construction comes with a price. As 
opposed to parametric intervals, non-parametric confidence intervals tend to be wider and generally 
require larger sample sizes to achieve comparably high confidence levels. To compute the LCL around 
the median with 99% confidence, at least 7 compliance point measurements are needed in the non-
parametric case. Therefore, sample data should be fit to a specific probability distribution whenever 
possible. 

The general method for constructing non-parametric confidence intervals involves an iterative 
testing procedure, where potential endpoints are selected from the sorted data values (i.e., order 
statistics) and then tested to determine what confidence level is associated with those endpoints. If the 
initial choice of order statistics gives an interval with insufficient confidence, the interval needs to be 
widened and tested again. Clearly, the greatest confidence will be associated with an interval defined by 
the minimum and maximum observed sample values. But if the sample size n is small, even the largest 
possible confidence level may be less than the desired target confidence (e.g., (1–α) = 0.99).  As such, 
the actual or achieved confidence level needs to be listed when reporting results of a non-parametric 
confidence interval test. 

It may be especially difficult to achieve target confidence levels around upper percentiles even 
when the sample size is fairly large.  An instructive example is when estimating an upper 95th percentile 
with a sample size of n = 20. In that case, the highest possible two-sided confidence level is 
approximately 64%, achieved when the minimum and maximum data values are taken as the interval 
endpoints. The confidence level is substantially less than the usual targets of 90% or more, and has very 
limited value as a decision basis. 

The width of a confidence interval (which expands as the level of confidence increases) should be 
balanced against the desire to construct an interval narrow enough to provide useful information about 
the probable location of the underlying population characteristic (e.g., the P = 95th percentile in the 
above example). A reasonable goal is to construct the shortest interval possible that still approaches the 
highest confidence level.  In the example, a confidence level of almost 63% could be achieved by setting 
the 17th and 20th ordered sample values as the confidence interval endpoints. The 20th ordered value is 
obviously the maximum observation and cannot be changed.  However, if any ranked value less than the 
17th is taken as the lower endpoint, the confidence level will increase only slightly, but the overall 
interval will be unnecessarily widened. 

An iterative process is used to construct non-parametric confidence limits.  It is recommended that 
a stopping rule be used to decide when the improvement in the confidence level brought about by 
picking more extreme order statistics is outweighed by the loss of information from making the interval 
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too wide. A reasonable stopping rule might be to end the iterative computations if the confidence level 
changes by less than 1 or 2 percent when a new set of candidate ranks is selected. 

Repeated calculation of cumulative binomial distribution probabilities Bin(x;n,p) are quite tedious 
when performed manually. One can make use of either an extensive table of binomial probabilities or a 
software package that computes them. Almost all commercial statistical packages will compute binomial 
probabilities. For small sample sizes up to n � 20, Table 21-11 in Appendix D provides achievable 
confidence levels for various choices of the sample order statistic endpoints such as the median and 
common upper percentiles.  

Tied values do not affect the procedure for constructing non-parametric confidence intervals. All 
tied values (including any non-detects treated as ties) should be regarded as distinct measurements. 
Because of this, ties can be arbitrarily broken when ranking the data. For example, a list of 6 values 
including 3 non-detects would be ordered as [<5, <5, <5, 8, 12, 20] and given the set of ranks [1, 2, 3, 4, 
5, 6].  Note that it is possible for the LCL to be set equal to the RL used for non-detects. 
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Step 1. Given a sample of size n, order the measurements from least to greatest.  Denote the ordered 
values by x(1), x(2),…, x(n), where x(i) is the ith concentration value in the ordered list and 
numbers 1 through n represent the data ranks. 

Step 2. Given P = .50, pick candidate interval endpoints by choosing ordered data values with ranks 
as close to and as symmetrical as possible around the product of (n+1) × 0.50. If this last 
quantity is a fraction (an even-numbered sample size), the ranks immediately above and below 
it can be selected as candidate endpoints. If the product (n+1) × 0.50 is an integer (an odd-
numbered sample size), add 1 and subtract 1 to get the upper and lower candidate endpoints. 
Once the candidate endpoints have been selected, denote the ranks of these endpoints by L

*
 

and U
*
. 

Step 3. For a two-sided confidence interval, compute the confidence level associated with the 
tentative endpoints L* and U* by taking the difference in the cumulative binomial 
probabilities given by the equation: 

 
  
1− α = Bin U * − 1; n,.50( )− Bin L* − 1;  n,.50( )=

n

x

�

��
�

��x= L∗

U ∗ −1

�
1
2

�

��
�

��

n

 [21.14] 

 For a one-sided LCL, compute the confidence level associated with endpoint L
*
 using the 

equation: 

 
  
1− α = 1− Bin L* − 1;  n,.50( )=

n

x

�

��
�

��x = L∗

n

�
1
2

�

��
�

��

n

 [21.15] 

 For a one-sided UCL, compute the confidence level associated with endpoint U
*
 using the 

equation: 
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1− α = Bin U * − 1; n,.50( )=

n

x

�
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�

��x =0

U ∗ −1

�
1
2

�

��
�

��

n

 [21.16] 

 To minimize the amount of direct computation needed, these equations have been used to 
compute selected cases over a range of sample sizes for the median in Table 21-11 of 
Appendix D. 

Step 4. If the candidate endpoint(s) do not achieve the desired confidence level, compute new 
candidate endpoints (L*–1) and (U*+1) and re-calculate the achieved confidence level. Repeat 
this process until the target confidence level is achieved. If one candidate endpoint already 
equals the data minimum or maximum, only change the rank of the other endpoint. If neither 
endpoint rank can be changed, set either: 1) the minimum concentration value as a one-sided 
LCL; 2) the maximum concentration value as a one-sided UCL; or 3) the interval spanned by 
the range of the sample as a two-sided confidence interval around the median. In each case, 
report the achieved confidence level associated with the chosen confidence limit(s). 

Step 5. Compare the confidence limit(s) computed in Step 4 versus the fixed compliance or clean-up 
standard. In compliance/assessment monitoring, use the LCL derived as the order statistic with 
rank L*. In corrective action monitoring, use the UCL derived as the order statistic with rank 
U*. 
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Use the following four years of well beryllium concentrations, collected quarterly for a total of n = 
16 measurements, to compute a non-parametric LCL on the median concentration with (1–α) = 99% 
confidence. 
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Step 1. Order the 16 measurements from least to greatest and determine the rank associated with each 
value (listed above in the last two columns). The smallest observation, 2.32 ppb, receives the 
smallest rank, while the largest value, 21.36 ppb, receives a rank of 16. 
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Step 2. Since a confidence interval on the median must be constructed, the desired percentile is the 
50th (i.e., P = 0.50). Therefore the quantity (n+1) × P = 17 × 0.50 = 8.5. The data ranks closest 
to this value are L* = 8 and U* = 9, so these are used as initial candidate endpoints. 

Step 3. Using the cumulative binomial distribution, and recognizing that only a lower confidence limit 
is needed, use equation [21.15] to calculate the actual confidence level associated with the 
order statistic x(8): 

 
  
1− α = 1− Bin L* − 1;  n,P( )= 1− Bin 7; 16,.50( )= 1−

16
x

�

��
�

��
.50( )16

= 0
x =0

7

� .4018  

 Since the achieved confidence level is much less than 99%, subtract 1 from L* and recompute 
the confidence level. Repeat this process until the confidence level is at least 99%. Since the 
achieved confidence when L* = 4 is equal to .9894 or approximately 99%, the LCL should be 
selected as x(4) (i.e., the 4th order statistic in the data set, also equal to the fourth smallest 
measurement), which equals 3.65 ppm. With statistical confidence of 98.94%, one can assert 
that the true median beryllium concentration in the underlying population is no less than 3.65 
ppm. 

Step 4. In this example, a lognormal model could also have been fit to the sample. Indeed the 
probability plot in Figure 21-2 below indicates good agreement with a lognormal fit, enabling 
a comparison between the non-parametric LCL with that derived from assuming a parametric 
model for the same data. 
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Step 5. Since the non-parametric LCL was constructed around the population median, the fairest 
comparison is to construct a lognormal-based confidence interval around the median and not 
the arithmetic mean. As discussed in Section 21.1.2, this is equivalent to constructing a 
confidence interval around the lognormal geometric mean. This can be built via a normal-
based confidence interval around the mean using the log-transformed measurements and then 
exponentiating the interval limits. Thus, using equation [21.3] with the log-mean and log-
standard deviation given by  y  = 1.8098 log(ppm) and sy = 0.60202 log(ppm) respectively, one 
can compute the 99% LCL as: 

 
  
LCL.99 = exp y − t.99,n−1

sy

n

�

�
�

�

�
� = exp 1.8098 − 2.602( ) .60202( ) 16�

�
	



= 4.13 ppm  

 The non-parametric LCL around the median is slightly lower than the limit computed by 
assuming an underlying lognormal distribution. Given the apparent lognormal fit, the 
parametric LCL is probably a slightly better estimate, but the non-parametric method performs 
well nonetheless. 

The chief virtue of using a parametric confidence interval is the ability to generate estimates at 
any confidence level even with small sample sizes. On the other hand, if the data are 
lognormally-distributed, a confidence interval on the arithmetic mean may be preferred for 
comparisons to a fixed standard, depending on the type of standard. The advantage of a non-
parametric interval around the median is its greater flexibility to define confidence intervals on 
non-normal data sets.  � 
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Step 1. Given a sample of size n, order the measurements from least to greatest.  Denote the ordered 
values by x(1), x(2), …, x(n), where x(i) is the ith concentration value in the ordered list and 
numbers 1 through n represent the data ranks. 

Step 2. Given the desired percentile P, pick candidate interval endpoints by choosing ordered data 
values with ranks as close to and as symmetrical as possible around the product (n+1) × P, 
where n is the sample size and P is expressed as a fraction. If this last quantity is a fraction 
(even-numbered sample size), the ranks immediately above and below it can be selected as 
candidate endpoints (unless the fraction is larger than n, in which case the maximum rank n 
would be chosen as the upper endpoint). If the product (n+1) × P is an integer (odd-numbered 
sample size), add 1 and subtract 1 to get the upper and lower candidate endpoints. Once the 
candidate endpoints have been selected, denote these by L* and U*. 

Step 3. For a two-sided confidence interval, compute the confidence level associated with the 
tentative endpoints L* and U* by taking the difference in the cumulative binomial 
probabilities given by the equation: 
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1− α = Bin U * − 1;  n, P( )− Bin L* − 1;  n, P( )=

n

x

�

��
�

��x= L∗

U ∗ −1

� Px 1− P( )n− x
 [21.17] 

 For a one-sided LCL, compute the confidence level associated with the endpoint L* using the 
equation: 

 
  
1− α = 1− Bin L* − 1;  n, P( )=

n

x

�

��
�

��x = L∗

n

� Px 1− P( )n− x
 [21.18] 

 For a one-sided UCL, compute the confidence level associated with the endpoint U* using the 
equation: 

 
  
1− α = Bin U * − 1; n, P( )=

n

x

�

��
�

��x =0

U ∗ −1

� Px 1− P( )n− x
 [21.19] 

 To minimize the amount of direct computation, these equations have been used to compute 
selected cases over a range of sample sizes and for certain percentiles in Table 21-11 of 
Appendix D.  

Step 4. If the candidate endpoint(s) do not achieve the desired or target confidence level, compute new 
candidate endpoints, (L*–1) and (U*+1), and re-calculate the achieved confidence level. 
Repeat this process until the target confidence level is achieved. If one candidate endpoint 
already equals the data minimum or maximum, only change the rank of the other endpoint. If 
neither endpoint rank can be changed, set either: 1) the minimum concentration value as a one-
sided LCL; 2) the maximum concentration value as a one-sided UCL; or 3) the interval 
spanned by the range of the sample data as a two-sided confidence interval around the Pth 
percentile. In each case, report the achieved confidence level associated with the chosen 
confidence limit(s). 

Step 5. Compare the confidence limit(s) computed in Step 4 versus the fixed compliance or clean-up 
standard. In compliance/assessment monitoring, use the LCL derived as the order statistic with 
rank L*. In corrective action monitoring, use the UCL derived as the order statistic with rank 
U*. 
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Use the following 12 measurements of nitrate at a well used for drinking water to determine with 
95% confidence whether or not the infant-based, acute risk standard of 10 mg/L has been violated. 
Assume that the risk standard represents an upper 95th percentile limit on nitrate concentrations. 
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Step 1. Half of the sample concentrations are non-detects, making a test of normality extremely 
difficult. One could attempt to fit these data via the Kaplan-Meier or Robust ROS adjustments 
(see Chapter 15), but here a non-parametric confidence interval around the upper 95th 
percentile will be constructed. 

Step 2. Order the data values from least to greatest and assign ranks as in the last column of the table 
above. Note that the apparent ties among the non-detects have been arbitrarily broken in order 
to give a unique rank to each measurement. 

Step 3. Using Table 21-11 in Appendix D for n = 12, there is approximately 88% confidence 
associated with using L* = 11 as the rank of the lower confidence bound and approximately 
98% confidence associated with using L* = 10. Since the target confidence level is 95%, it can 
only be achieved by using a rank of 10 or less. Thus the non-parametric LCL needs to be set to 
the 10th smallest observation or x(10). Scanning the list of nitrate measurements, the LCL = 
11.0 ppm. 

Step 4. Since the order statistic x(10) achieves a confidence level of 98%, one can conclude that the 
true upper 95th percentile nitrate concentration is no smaller than 11.0 ppm with 98% 
confidence. Even by this more stringent confidence level, the acute risk standard for nitrate is 
violated and there is statistically significant evidence that at least 1 of every 20 nitrate 
measurements from the well will exceed 10 mg/L. 

Step 5. If the well was being remediated under corrective action monitorign, the fixed standard would 
be compared against a one-way UCL around the upper 95th percentile. In that case, for n = 12, 
Table 21-11 of Appendix D indicates that the maximum observed value of 35.1 mg/L taken 
as the UCL achieves a confidence level of only 46%. 95% confidence could not be achieved 
unless at least 59 sample measurements were available and the UCL was set to the maximum 
of those values.  The remedial action would be considered successful only if all 59 
measurements were below the fixed standard of 10 mg/L. � 
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It was assumed that the underlying population is stable, (i.e., characteristics like the mean, median, 
or upper percentiles are stationary over the period of sampling) for the confidence intervals so far 
presented in this chapter. In some cases, however, the concentration data will exhibit a trend. Examples 
might include successful remediation efforts that serve to gradually drive down a well’s concentration 
levels, or interception of an intensifying plume of contaminated groundwater.3 

The problem with ignoring a discernible trend when building a confidence interval is that the 
interval will incorporate not only the natural variability in the underlying population, but also additional 
variation induced by the trend itself. The net result is a confidence interval that can be much wider than 
expected for a given confidence level and sample size (n).  A wider confidence interval makes it more 
difficult to demonstrate an exceedance or return to compliance versus a fixed standard in 
compliance/assessment or corrective action monitoring. The confidence interval will have less statistical 
power to identify compliance violations, or to judge the success of remedial efforts. 

When a linear trend is present, it is possible to construct an appropriate confidence interval built 
around the estimated trend. A continuous series of confidence intervals is estimated at each point along 
the trend, termed a simultaneous confidence band. An upper or lower confidence band will tend to 
follow the estimated trend line whether the trend is increasing or decreasing.  It is computed once the 
trend line has been estimated. 

Construction of a confidence interval around a trend line presumes that a trend actually exists. The 
algorithms presented in this section assume that a trend is readily discernible on a time series plot of the 
measurements and that it is essentially linear. Otherwise, the results may be less than credible. 
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A standard method for estimating a linear trend is linear regression, introduced in Chapter 17. In 
this section, equations for constructing a linear regression are extended to form a confidence band 
around the trend. Although a parametric technique, there is no requirement that the concentration 
measurements be normal or transformable to normality.  Instead, the residual concentrations after 
subtracting out the estimated trend line should be roughly normal in distribution or at least symmetric.  

By way of interpretation, each point along the trend line is an estimate of the true mean 
concentration at that point in time. As the underlying population mean either increases or decreases, the 
confidence band similarly increases or decreases to reflect this change.  

Although the equations presented below can be used to simultaneously construct a confidence 
interval around each point on the trend line, in practice, the user will want to compute a confidence 

                                                 

3 This might occur if the well screen first intercepts the leading edge of the plume, followed by the more heavily contaminated 
core. 
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interval for a few or several of the most recent sampling events. Because the individual confidence 
intervals comprising the simultaneous confidence band have a joint confidence level of (1–�), no matter 
how many confidence intervals are constructed, the overall false positive rate associated with the entire 
set of tests against the fixed standard will be no greater than a pre-specified α. 
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To accurately estimate a confidence band, the sample variance should be stationary or constant as a 
function of time.  Although the mean level may be increasing or decreasing with time, the level of 
variation about the mean should be essentially the same. 

Once a linear regression is fitted to the data, the residuals around the trend line should be tested for 
normality and apparent skewness. Inferences concerning a linear regression are generally appropriate 
when two conditions hold: 1) the residuals from the regression are approximately normal or at least 
reasonably symmetric in distribution; and 2) a plot of residuals versus concentrations indicates a scatter 
cloud of essentially uniform vertical thickness or width. That is, the scatter cloud does not tend to 
increase in width with the level of concentration or exhibit any kind of regular pattern other than looking 
like a random scatter of points. 

If one or both of these conditions is seriously violated, it may indicate that the basic trend is either  
non-linear, or the size of the variance is not independent of the mean level.  If the variance is roughly 
proportional to mean concentrations, one possible remedy is to try a transformation of the measurements 
and re-estimate the linear regression. This will change the interpretation of the estimated regression from 
a linear trend of the form y = a + bt , where y and t represent concentration and time respectively, to a 
non-linear pattern. As an example, if the concentration data are transformed via logarithms, the 
regression equation will have the form  log y = a + bt . On the original concentration scale, the trend 

function will then have the form 
  
y = exp a + bt( ). 

When the regression data are transformed in this way, the estimated trend in the concentration 
domain (after back-transforming) no longer represents the original mean.  The transformation induces a 
bias in the confidence intervals comprising the confidence band when converted back to the original 
scale as in the case of samples with no trend.  If a log transformation is used, for instance, the back-
transformed confidence band around the trend line represents confidence intervals around the original-
scale geometric means and not the arithmetic means. If a comparison of an estimated geometric mean or 
similar quantity to the fixed standard makes sense, computing a trend line on the transformed data 
should be acceptable.  However, if a confidence interval around an arithmetic mean is required, 
consultation with a professional statistician may be necessary. 

The technique presented here produces a confidence interval around the mean as a function of time 
and not an upper percentile. Thus, we recommend that the use of this method be restricted to cases 
where the fixed standard represents a mean concentration and not an explicit upper percentile or a ‘not-
to-exceed’ limit. 

At least 8 to 10 measurements should be available when computing a confidence band around a 
linear regression.  There must be enough data to not only estimate the trend function but also to compute 
the variance around the trend line.  In the simplest case when no trend is present, there are (n–1) degrees 
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of freedom [df] in a sample of size n with which to estimate the population variance. With a linear trend, 
however, the available degrees of freedom df is reduced to (n–2).  For moderate to large samples, loss of 
one or two degrees of freedom makes little difference. But for the smallest samples, the impact on the 
resulting confidence limits can be substantial. 

One last assumption is that there should be few if any non-detects when computing the regression 
line and its associated confidence band. As a matter of common sense, a readily discernible trend in a 
data set (either increasing or decreasing) should be based on quantified measurements. Changes in 
detection and/or RLs over time can appear as a declining trend, but may actually be an artifact of 
improved analytical methods.  Such artifacts of plotting and data reporting should generally not be 
considered real trends. 
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Step 1. Construct a time series plot of the measurements. If a discernible trend is evident, compute a 
linear regression of concentration against sampling date (time), letting xi denote the ith 
concentration value and ti denote the ith sampling date. Estimate the linear slope with the 
equation: 

 ( ) ( )�
=

⋅−⋅−=
n

i
tii snxttb

1

21ˆ  [21.20] 

 This estimate leads to the regression equation, given by: 

 ( )ttbxx −⋅+= ˆˆ  [21.21] 

 where  t  denotes the mean sampling date,   st
2  is the variance of the sampling dates,  x  is the 

mean concentration level, and x̂  represents the estimated mean concentration at time t. 

Step 2. Compute the regression residual at each sampling event with the equation: 

 iii xxr ˆ−=  [21.22] 

 Check the set of residuals for lack of normality and significant skewness using the techniques 
in Chapter 10. Also, plot the residuals against the estimated regression values ( ix̂ ) to check 
for non-uniform vertical thickness in the scatter cloud. If the residuals are non-normal and 
substantially skewed and/or the scatter cloud appears to have a definite pattern (e.g., funnel-
shaped; ‘U’-shaped; or, residuals mostly positive on one end of the graph and mostly negative 
on the other end, instead of randomly scattered around the horizontal line r = 0), repeat Steps 1 
and 2 after first transforming the concentration data. 

Step 3. Calculate the estimated variance around the regression line (also known as the mean squared 
error [MSE]) with the equation: 

 
  
se

2 =
1

n − 2
ri

2

i=1

n

�  [21.23] 
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Step 4. Given confidence level (1–α) and a point in time (t0) at which a confidence interval around the 
trend line is desired, compute the lower and upper confidence limits with the respective 
equations: 
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 where 0x̂  is the estimated mean concentration at time t0 from the regression using equation 

[21.21], and F1–2α, 2, n–2 is the upper (1–2α)th percentage point from an F-distribution with 2 
and (n–2) degrees of freedom.  Values for F can be found in Table 17-1 of Appendix D. 

Step 5. Depending on whether the regulated unit is in compliance/assessment or corrective action 
monitoring, compare the appropriate confidence limit against the GWPS. Multiple confidence 
limits can be computed at a single compliance point well without increasing the significance 
level (α) of the comparison. It is possible to estimate at what point in time (if ever) the 
confidence limit first lies completely to one side of the fixed comparison standard, without 
risking an unacceptable false positive rate increase for that well. 
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Trichloroethylene [TCE] concentrations are being monitored at a site undergoing remediation. If 
the GWPS for TCE has been set at 20 ppb, test the following 10 measurements collected at a compliance 
point well over the last two and a half years to determine if the clean-up goal has been reached at the α = 
0.05 level of significance. 
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Step 1. Construct a time series plot of the TCE measurements as in the graph below (see Figure 21-
3). A general downward, linear trend is evident. Then compute the estimated regression line 
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using equations [21.20] and [21.21], first determining that the mean time value is   t = 15.3, 
the variance of time values is   st

2 = 88.2333 , and the mean TCE measurement is   x = 30.42 ppb: 

 ( ) ( ) ( )[ ] ( ) monthpppb 603.12333.8891.43.15303.443.1542.543.152ˆ −=×⋅−++⋅−+⋅−= �  

 ( )3.15603.142.30ˆ −⋅−= ty  
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Step 2. Compute the regression residuals using equation [21.22] (listed in the table above). Note that 
the residuals are found by first computing the regression line estimate for each sampled month 
(i.e., t = 2, 4, 8, etc.) and then subtracting these estimates from the actual TCE concentrations. 
A probability plot of the regression residuals appears reasonably linear (Figure 21-4) and the 
Shapiro-Wilk statistic computed from these data yields SW = 0.962, well above the α = 0.05 
critical point for n = 10 of sw.05,10 = 0.842. Thus, normality of the residuals cannot be rejected. 

In addition, a plot of the residuals versus the regression line estimates (Figure 21-5) exhibits 
no unusual pattern, merely random variation about the residual mean of zero. Therefore, 
proceed to compute a confidence interval around the trend line. 
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Step 3. Compute the variance around the estimated trend line using equation [21.23]: 

 ( ) ( ) ( )[ ] 60.15761.2230.4465.2
8
1 2222 =−++−+⋅= �es  

Step 4. Since the comparison to the GWPS of 20 ppb is to be made at the α = 0.05 significance level, 
the confidence limit is (1–α) = 95% confidence. Since the remediation effort aims to 
demonstrate that the true mean TCE level has dropped below 20 ppb, a one-way UCL needs to 
be determined using equation [21.25]. A logical point along the trend to examine is the last 
sampling event at t0 = 30.  Using the estimated regression value at t0 = 30, and the fact that 
F.90,2,8 = 3.1131, the UCL on the mean TCE concentration at this point becomes: 

 

  

UCL.95 = 6.861+ 2 × 15.60 × 3.1131×
1

10
+

30 − 15.3( )2

8 × 88.2333
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= 13.14 ppb  

 Since this upper limit is less than the GWPS for TCE, conclude that the remediation goal has 
been achieved by t0 = 30. In fact, other times can also be tested using the same equation. At 
the next to last sampling event (t0 = 26), the UCL is: 

 

  

UCL.95 = 13.272 + 2 × 15.60 × 3.1131×
1

10
+

26 − 15.3( )2

8 × 88.2333
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= 18.32 ppb  

 which also meets the remediation target at the α = 0.05 level of significance. 

Step 5. If the linear trend is ignored, a onew-way UCL of the mean might have been used.  The overall 
TCE sample mean   x = 30.42 , the TCE standard deviation s = 15.508, and the upper 95th 
percentage point of the t-distribution with 9 degrees of freedom is t.95,9 = 1.8331.  Using 
equation [21.2] with the same data yields the following: 

 
  
UCL.95 = 30.42 + 1.8331( )15.508( ) 10 = 39.41 ppb  

 Had the linear trend been ignored when computing the UCL, the remediation target would not 
have been achieved.  The downward trend induces the largest part of the variation observed 
over the two and a half years of sampling and needs to be taken into account.� 
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The Theil-Sen trend line is introduced in Section 17.3.3 as a non-parametric alternative to linear 
regression. Whether due to the presence of non-detects or trend residuals that cannot be normalized, the 
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Theil-Sen method can usually construct a trend estimate without some of the assumptions needed by 
linear regression. 

The Theil-Sen trend line is non-parametric because it combines the median pairwise slope (Section 
17.3.3) with the median concentration value and the median sample date to construct the trend. Because 
of this construction, the Theil-Sen line estimates the change in median concentration over time and not 
the mean as in linear regression. 

There are no simple formulas to construct a confidence band around the Theil-Sen line. However, a 
more computationally-intensive technique — bootstrapping — can be employed instead. The conceptual 
algorithm is fairly simple.  First consider the set of n pairs of measurements used to construct the Theil-
Sen trend.  Each pair consists of a sample date (ti) and the concentration value measured on that date (xi) 
as a statistical sample. Next, repeatedly draw samples of size n with replacement from the original 
sample of pairs. These artificially constructed samples are known as bootstrap samples. At least 500 to 
2,000 bootstrap samples are generated in order to improve the accuracy of the final confidence band. 
Note that a bootstrap sample is not precisely the same as the original because pairs are sampled with 
replacement. This means that a given pair might show up multiple times in any particular bootstrap 
sample. 

For each bootstrap sample, use the Theil-Sen algorithm to construct an associated trend line 
(Section 17.3.3). Each of these trend lines is known as a bootstrap replicate. Finally, determine the 
distribution of the bootstrap replicates and select certain percentiles of this distribution to form lower 
and upper confidence limits. These limits can be constructed to represent a non-parametric simultaneous 
confidence band around the Theil-Sen trend line with (1–�) confidence. 
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The key requirements for constructing a confidence band around a Theil-Sen trend are the same as 
for the Theil-Sen procedure itself (Section 17.3.3). As a non-parametric procedure, the trend residuals 
do not have to be normal or have equal variance across the data range.  But the residuals are assumed to 
be statistically independent.  Approximate checks of this assumption can be made using the techniques 
of Chapter 14, after removing the estimated Theil-Sen trend and as long as there aren’t too many non-
detects. It is also important to have at least 8-10 observations from which to construct the bootstrap 
samples. 

Non-detects can be accommodated by the Theil-Sen method as long as the detection frequency is at 
least 50%, and the censored values occur in the lower part of the observed concentration range. Then the 
median concentration value and the median pairwise slope used to compute the Theil-Sen trend will be 
based on clearly quantified values. 

Since there are no simple mathematical equations which can construct the Theil-Sen confidence 
band, a computer software program is essential for performing the calculations. Perhaps the best current 
solution is to use the open-source, free-of-charge, statistical computing package R (www.r-project.org). 
A template program (or script) written in R to compute a Theil-Sen confidence band is listed in 
Appendix C. This script can be adapted to any site-specific data set and used as many times as 
necessary, once the R computing environment has been installed. 
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Step 1. Given the original sample of n measurements, form a sample of n pairs (ti, xi), where each pair 
consists of a sample date (ti) and the concentration measurement from that date (xi). 

Step 2. Form B bootstrap samples by repeatedly sampling n pairs at random with replacement from 
the original sample of pairs in Step 1. Typically, set B � 500. 

Step 3. For each bootstrap sample, construct a Theil-Sen trend line using the algorithm in Section 
17.3.3. Denote each of these B trend lines as a bootstrap replicate. 

Step 4. Determine a series of equally spaced time points (tj) along the range of sampling dates 
represented in the original sample, j = 1 to m. At each time point, use the Theil-Sen trend line  
associated with each bootstrap replicate to compute an estimated concentration ( B

jx̂ ). There 

will be B such estimates at each of the m equally-spaced time points when this step is 
complete. 

Step 5. Given a confidence level (1–�) to construct a two-sided confidence band, determine the lower 
(�/2)th and the upper (1–�/2)th percentiles, denoted [ ]2ˆ α

jx  and [ ]21ˆ α−
jx  from the distribution of 

estimated concentrations at each time point (tj).  The collection of these lower and upper 
percentiles along the range of sampling dates (tj, j = 1 to m) forms the bootstrapped confidence 
band. To construct a lower confidence band, follow the same strategy.  But determine the 
lower �th percentile [ ]α

jx̂  from the distribution of estimated concentrations at each time point 

(tj). For an upper confidence band, compute the upper (1–�)th percentile, [ ]α−1ˆ jx  at each time 

point (tj). 

Step 6. Depending on whether the regulated unit is in compliance/assessment or corrective action 
monitoring, compare the appropriate confidence band against the GWPS. Estimate at what 
point in time (if ever) the confidence band first sits completely to one side of the fixed 
comparison standard. 

� ��%��
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In Example 17-7, a Theil-Sen trend line was estimated for the following sodium measurements. 
Note that the sample dates are recorded as the year of collection (2-digit format), plus a fractional part 
indicating when during the year the sample was collected. Construct a two-sided 95% confidence band 
around the trend line. 
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Step 1. Designate the n = 10 (sample date, concentration) pairs as the original sample for purposes of 
bootstrapping. Set the number of bootstrap samples to NB = 500. 

Step 2. Sample at random and with replacement NB = 500 times from the original sample to form the 
bootstrap samples. Compute a bootstrap replicate Theil-Sen trend line for each bootstrap 
sample. This gives 500 distinct linear trend lines. 

Step 3. Divide the observed range of sampling dates from 89.6 to 96.3 into m = 101 equally-spaced 
time points, tj (note: choice of m is arbitrary, depending on how often along the time range an 
estimate of the confidence band is needed). At each time point, compute the Theil-Sen 
concentration estimate using each bootstrap replicate trend. This leads to 500 estimates of the 
form: 

 ( )B
j

BBB
j ttQxx ~~ˆ −⋅+=  

 where Bx~  is the median concentration of the Bth bootstrap sample, QB is the Theil-Sen slope 
of the Bth bootstrap sample, and Bt~ is the median sampling date of the Bth bootstrap sample. 

Step 4. Given a two-way confidence level of 95%, compute the lower �/2 = 0.05/2 = 0.025 and upper 
(1–�/2) = (1–0.05/2) = 0.975 sample percentiles (Chapter 3) for the set of 500 concentration 
estimates associated with each time point (tj). This entails sorting each set and finding the 
value closest to rank (n+1) × p, where p = desired percentile. In a list of n = 500, find the 
sorted values closest to the ranks 501 × 0.025 = 12.525 for the lower percentile and 501 × 
0.975 = 488.475 for the upper percentile. Collectively, the lower and upper percentiles plotted 
by the time points give an approximation to the 95% two-sided confidence band. 

Step 5. Plot the lower and upper confidence bands as well as the original Theil-Sen trend line and the 
raw sodium measurements, as in Figure 21-6. The fact that the trend is increasing over time is 
confirmed by the rising confidence band. � 
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Chapter 7 lays out general strategies for statistical testing in compliance/assessment and corrective 
action monitoring via the use of confidence intervals. Procedures for constructing confidence intervals 
are described in Chapter 21. This chapter discusses potential methods for developing confidence 
interval tests so that adequate statistical power is maintained in compliance/assessment monitoring and 
false positive rates are minimized in corrective action monitoring. 
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As discussed in Chapter 7, EPA’s primary concern in compliance/assessment and corrective 
action monitoring is the identification and remediation of contaminated groundwater. The basic 
statistical hypotheses are reversed in these two phases of monitoring as described in Chapter 21 and 
earlier.  The lower confidence limit [LCL] is of most interest in compliance/assessment, while the upper 
confidence limit [UCL] is used in corrective action.  Statistical power is also of greater concern to the 
regulatory agency in compliance/assessment— representing the probability that contamination above a 
fixed standard will be identified. A sufficiently conservative false positive rate during corrective action 
is important from a regulatory standpoint, since a false positive implies that contaminated groundwater 
has been falsely declared to meet a compliance standard.  The reverse of these risks is generally true for 
a regulated entity. 

To ensure that contaminated groundwater is treated in ways that are statistically sound, the two 
specific strategies which follow separately address compliance/assessment monitoring and formal testing 
in corrective action.  The latter occurs after the completion of remedial activities or when potential 
compliance can be anticipated. Each strategy is designed to allow stakeholders on both sides of the 
regulator/regulated divide to understand the expected statistical performance of a given confidence 
interval test. 

The two strategies which follow are based on the behavior of the normal mean confidence interval.    
They especially assume that the monitoring data are stationary over the period of record.   Other 
important assumptions were discussed in Chapter 21.   In the discussion which follows, consideration is 
given to data that is normal following a logarithmic transformation and the possible tests which can be 
applied. 
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In most statistical literature including Gibbons & Coleman (2001) comparing a confidence interval 
against a fixed standard, a low false positive error rate (α) is chosen or recommended without respect to 
the power of the test. However, the power to detect increases above a fixed standard using a lower 
confidence limit around the mean can be negligible when contaminant variability is high and the sample 
size is small (Chapter 7). To remedy this problem, the Unified Guidance suggests an alternate strategy.  
That is, instead of pre-specifying the false positive rate � prior to computing confidence interval limits, a 
desired level of power (1–�) should be set as an initial target. 

Ideally one would like to simultaneously minimize � and maximize power by also minimizing � 
(i.e., the false negative rate).  However, this is generally impossible given a fixed sample size (Chapter 
3), since there is a trade-off between power and the false positive rate. Especially for small sample sizes, 
fixing a low � often leads to less than desirable power. Conversely, pre-specifying a high power 
necessitates a higher than typical false positive rate.  Larger sample sizes are needed if both power and � 
are pre-specified.  High variability at a fixed sample size both lowers power and/or increases the need for 
a larger false positive error rate. 

A number of considerations are relevant when constructing mean confidence limits to achieve 
adequate statistical power.  In most Agency risk assessment evaluations, chronic risk levels are generally 
proportional to the average concentration. Development of MCLs followed similar proportional risk 
methodologies. Fixed health-based limits which can serve as groundwater protection standards [GWPS] 
also cover an enormous concentration range when both carcinogenic and non-carcinogenic constituents 
are included. 

Another relevant factor pertains to those situations where the true mean concentrations lie quite 
close to either side of a compliance standard.  The difference between complying and not complying 
with the GWPS in terms of the true mean concentration level may be so small as to make a clear 
determination of compliance very difficult (Figure 22-1).  Only sufficiently large differences relative to 
a standard are likely to be determined with a high level of certainty (i.e., statistical power). 
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With the wide range of GWPS in place and recognizing that risk factors are proportional or 
multiplicative rather than additive (e.g., a 10–6 cancer risk), it would be appropriate to use a consistent 
measure of increased risk that is independent of the actual GWPS concentration level. While ultimately 
the decision of the regulatory authority, the Unified Guidance suggests a proportional increase (i.e., a 
ratio) above the GWPS, which is identified at some predetermined level of statistical power to judge the 
appropriateness of any specific mean confidence interval test. 

For compliance/assessment monitoring purposes, increases in the true concentration mean of 1.5 
and 2 times a fixed standard are evaluated at a range of confidence levels. While this is not quite the 
same as evaluating an absolute mean increase for a given constituent, the use of a risk ratio (R) does in 
fact define a specific increase in concentration level. For example, a risk ratio of 1.5 would identify a 
critical increase above the 15 µg/l MCL standard for lead of 22.5 – 15 = 7.5 µg/l, while for chromium 
with an MCL = 100 ug/l, the absolute increase would be 50 ug/l. Each represents a 50% increase in risk 
relative to the GWPS. 

Two approaches for assessing statistical power in compliance/assessment monitoring are provided 
using these critical risk ratios, based on different assumptions regarding sample variability. In the first 
approach, a constant population variance is assumed, equal to the standard (i.e., GWPS) being tested. 
Under the null hypothesis that the true population mean is no greater than the GWPS, this assumption 
corresponds to having a coefficient of variation [CV] of 1 when the true mean equals the standard. 
Although observed sample variability is ignored, this case can be considered a relatively conservative  
approach.  

GWPS

True Mean Under H

True Mean Under H

Confidence Intervals too wide to determine compliance of true mean

0

A
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Assuming CV = 1, the relationship between the risk ratio (R), statistical power (1–�), sample size 
(n), and the false positive rate (�) can be obtained using the following equation: 

 
  
1− β = GT ,n−1 t1−α ,n−1 ∆ = n R − 1( )( ) [22.1] 

where 
  
t1−α ,n−1  is the (1–α)th Student’s t-quantile with (n–1) degrees of freedom and ( )∆•−1, nTG  

represents the cumulative non-central t-distribution with (n–1) degrees of freedom and non-centrality 
parameter ∆. By fixing a desired or target power level, equation [22.1] can be used to choose the 
necessary α based on the available sample size n.   Alternatively, the equation can be used to determine 
the sample size (n) needed to allow for a pre-determined choice of α. 

Numerical tabulations of equation [22.1] are found in Tables 22-1 and 22-2 in Appendix D. These 
tables cover a practical range of n = 3 to 40 and α = .001 to .20, and offer combinations of the minimum 
false positive rate (α) and sample size (n) for several fixed levels of power.  These can be used to 
construct lower confidence limits having a pre-specified level of power. It is important to note that the 
listed combinations are the smallest α-values resulting in the targeted power. For a fixed n, use of an α-
value larger than that listed in the tables will provide even greater power than the target. Similarly, for 
given α, use of a larger sample size than that listed in the tables will also result in greater power than the 
target. 

Minimum parameter values are presented in Tables 22-1 and 22-2 of Appendix D to document 
how the desired power level can be achieved with as few observations and as small a false positive error 
rate as possible. It is also true that an assumption of CV = 1 should be somewhat conservative at many 
sites. Actual power will be higher than that listed in these tables if the coefficient of variation is smaller.  
Not every power level is achievable in every combination of n and �, so some of the entries in these two 
tables are left blank.  

The second approach requires an estimate of the population coefficient of variation. In this case, 
the required (but approximate) false positive rate of the test can be directly obtained from equation 
[22.2], where R is the desired risk ratio, n is the sample size, VC ˆ is the estimated sample coefficient of 
variation, 

  
t1− β ,n−1  is the (1–β)th Student’s t-quantile with (n–1) degrees of freedom, and ( )•−1, nTF   is the 

cumulative (central) Student’s t-distribution function: 

 
( )

�
�
�

�
�
�
�

�
−

⋅
⋅−−≅ −−− 1,11, ˆ

1
1 nnT t

VCR

nR
Fa β  [22.2] 

Equation [22.2] was evaluated for sample sizes varying from n = 4 to 12 and for CVs ranging from 
0.1 to 3.0 at two target combinations of power and risk ratio — R = 1.5 at 50% power and R = 2 at 80% 
power. Results of these calculations are provided in Table 22-3 of Appendix D. Similar to the critical 
power targets recommended by the Unified Guidance in detection monitoring (i.e., 55-60% power at 3σ 
above background, and 80-85% power at 4σ over background), two high power targets at proportionally 
increasing risk ratios were also chosen for this setting. 
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Table 22-3 in Appendix D provides the approximate minimum false positive rate (α) necessary to 
achieve each power target in a single confidence interval test. The shaded and italicized entries in the 
table represent those cases where the minimum α is below the RCRA regulatory limitation of α = .01 
from §264.97(i)(2) for an individual test false positive error rate. For these situations, the user would 
need to set α = 0.01, which in turn would provide even greater statistical power than the target. 

For higher estimated CVs, many of the entries in this table exceed α = .5 (bolded entries). These 
cases illustrate the difficulty of simultaneously attaining the recommended level of power while 
controlling the false positive rate, especially for small sample sizes and highly variable data.  Setting a 
lower α, results in insufficient statistical power. On the other hand, setting α � .5 amounts to a simple 
comparison of the sample mean against the fixed standard, with essentially no adjustment for sample 
variability or uncertainty. Similar to the first approach, a maximum false positive rate of � = .2 is a 
reasonable upper bound which implies at most a 1-in-5 chance of an error. 

Generally speaking, setting 80% power at a risk ratio of R = 2 in Table 22-3 of Appendix D is 
more constraining (requiring higher α’s) than 50% power at a risk ratio of R = 1.5, although the effect 
can be reversed for low CVs and sample sizes. To meet both targets simultaneously for a given n, the 
larger of the corresponding significance levels (α) should be selected.  Guidance users may choose either 
of the two approaches described above. Other ratio and power options not covered in Tables 22-1 
through 22-3 of Appendix D can be handled by direct computation using either equation [22.1] or 
equation [22.2]. The first method makes an a priori assumption about the CV. The second method is 
approximate, depending on a sample CV estimate which might be erratic at small sample sizes and larger 
true population CVs especially if the compliance data are non-normal. 

Both approaches are directly applicable to the normal mean LCL test in Section 21.1.1.  While the 
CV can be directly estimated using xs  on the original concentration data, this statistic will 
underestimate the likely variability when data are lognormal.  In that case, the logarithmic CV estimate 
in Chapter 10, Section 10.4 should be used.  If the data best fit a lognormal distribution, a number of 
considerations follow: 

� It is possible to misapply the normal mean confidence interval test using the original 
concentration data, even when the data stem from a lognormal distribution.  The mean is 
relatively robust with respect to departures from normality as long as the CV variability is 
not too great.  If the predetermined false positive error � is selected based on the normal 
power criteria above, the resulting LCL test will be at least as powerful as the normal test.  
The actual false positive error rate will also differ.   

� If a geometric mean test in Section 21.1.2 is used, the LCL should be computed from the 
logarithmically transformed data. Tables 22-1 to 22-3 in Appendix D are based on normal 
distribution assumptions and the error rates are very conservative with respect to the 
achievable power.   As an example, given a data set from a lognormal distribution with n = 
10, and an estimated CV = .8, an alpha value of .151 can be identified from Table 22-3 in 
Appendix D.  The actual power to detect a doubling above a GWPS at 80% confidence 
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would result in a power level of 94.5%.  The false positive needed to detect a geometric 
mean doubling for this example to meet the above criteria would be � = .026.1 

� The Land lower confidence interval test from Section 21.1.3 can also be used.  But since 
there are limited �-choices in the tables, the guidance option is to select a fixed limit of .01, 
.05, or .1.   If data are truly lognormal, the power of this test is at least as great as would be 
predicted by equations [22.1] and [22.2].  Otherwise, professional statistical assistance may 
be necessary.   

 Since compliance data will often be pooled over time to increase the eventual sample size 
(Chapter 7), the two approaches can be combined by determining the false positive rate for a given risk 
ratio and power level during the first year with Tables 22-1 and 22-2 of Appendix D. Tests in 
subsequent years might use the second power approach when a better CV estimate (using more data) can 
be derived. Overall, each approach should provide a reasonable manner of adjusting the individual test 
false positive rate (α) to ensure adequate power to detect real contaminant increases. As a general guide, 
the Unified Guidance suggest formulating power in terms of risk ratios no higher than R = 2. There 
should be at least 70-80% statistical power for detecting increases of that magnitude during 
compliance/assessment monitoring. 

� ��0��������
��

Compliance monitoring recently began at a solid waste landfill.  Measurements for vinyl chloride 
during detection monitoring are listed below for two compliance wells. If a value of 5 ppb vinyl chloride 
is used as the GWPS and a confidence interval test must have 80% power for detecting an increase in 
mean vinyl chloride levels of twice the GWPS, how should the confidence interval bounds be 
constructed and what do they indicate? Assume that compliance monitoring began with Year 2 of the 
sampling record and that annual groundwater evaluations are required. 
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Step 1. Assume for purposes of this example that the vinyl chloride data are approximately normal. In 
practice, this should be explicitly checked. Also evaluate potential trends in the vinyl chloride 

                                                 

1  For users with access to statistical software containing the cumulative non-central t-distribution, the inverse non-central t 
CDF can be used to identify the appropriate false positive level.  For sample size df =n -1= 9, and a non-central t parameter 

= ( ) ysRn log⋅=δ , the appropriate central t-value can be obtained from ( )δβ ,,1 dfF − .   The confidence level of 

this t-value is 1 - �.   For the example, df = 9, �= .2, � = 3.115, and the central t-value is 2.23 with � = .0264. 
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measurements over time, as in the time series plot of Figure 22-2. Despite apparent 
fluctuations, no obvious trend is observed. So treat these data as if the population has a stable 
mean at least for the time frame indicated in the sampling record. 
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Step 2. Given that compliance monitoring began in Year 2, use the four measurements available from 
each well to construct lower confidence limits. Since 80% power is desired for detecting vinyl 
chloride increases of two times the 5 ppb GWPS, Table 22-2 in Appendix D indicates that for 
n = 4, a false positive rate of α = 0.163 must be used to guarantee the desired power. This 
corresponds to a Student’s t-quantile of 

  
t1−α ,n−1 = t.837,3 = 1.1714 . Then using the sample means 

and standard deviations of the Year 2 vinyl chloride measurements, the lower confidence 
limits can be computed as: 

 
  
LCLGW −1 = x − t1−α ,n−1

s

n
= 8.0 − 1.1714 2.2346 4( )= 6.7 ppb  

 
  
LCLGW − 2 = x − t1−α ,n−1

s

n
= 9.9 − 1.1714 2.4468 4( )= 8.5 ppb  

Step 3. Since both lower confidence limits exceed the GWPS, there is statistically significant evidence 
of an increase in vinyl chloride at these wells above the compliance limit. Such a conclusion 
also seems reasonable from Figure 22-2. However, the chance is better than 15% (i.e., α = 
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16.3%) that the apparent exceedance is merely a statistical artifact. If power criteria are 
ignored and a fixed minimum rate of α = .01 is used, the lower confidence limits would be: 

 
  
LCLGW −1 = x − tα ,n−1

s

n
= 8.0 − 4.541 2.2346 4( )= 2.9 ppb  

 
  
LCLGW − 2 = x − tα ,n−1

s

n
= 9.9 − 4.541 2.4468 4( )= 4.3 ppb  

 Neither limit now exceeds the GWPS, so the vinyl chloride concentrations would be judged in 
compliance with this test, illustrating the lack of power in lowering the false positive rate (α). 

Step 4. To increase the confidence level (i.e., by lowering α) of the tests at the end of the first year of 
compliance monitoring (i.e., Year 2 in the preceding table of vinyl chloride values) without 
losing statistical power, combine the measurements from Years 1 and 2, where Year 1 samples 
represent the final measurements from detection monitoring prior to the start of compliance 
monitoring. In this case, n = 8, and the minimum false positive rate from Table 22-2 of 
Appendix D can be lowered to α = .046 or approximately 4.5%. Then the re-computed lower 
confidence limits ppbLCLGW 0.71 =− and ppbLCLGW 4.62 =− again both exceed the GWPS, 
indicating significant evidence of a compliance violation. 

Step 5. If the strategy presented in Step 4 of combining measurements from detection monitoring and 
compliance monitoring is considered untenable, additional confirmation of the results can be 
made at the end of Year 3 by combining the first two years of compliance monitoring samples 
and ignoring the measurements from Year 1. Again with n = 8, the minimum false positive 
rate guaranteeing at least 80% power will be α = .046. The lower confidence limits are then: 

 
  
LCLGW −1 = x − t1−α ,n−1

s

n
= 7.575 − 1.9512 1.9521 8( )= 6.2 ppb  

 
  
LCLGW − 2 = x − t1−α ,n−1

s

n
= 9.975 − 1.9512 2.7473 8( )= 8.1 ppb  

Step 6. An even lower false positive rate can be achieved after the first three years of compliance 
monitoring. Pooling these measurements gives n = 12. Then Table 22-2 in Appendix D 
identifies a minimum false positive rate of α = .013 or less than 1.5%. In this case, the lower 
confidence limits ppbLCLGW 8.61 =−  and ppbLCLGW 6.72 =− again exceed the GWPS, 
confirming the previous vinyl chloride exceedances from either Year 2, Years 1 and 2 
combined, or Years 2 and 3 combined. Furthermore, not only is the false positive rate quite 
low, but the power of the test still meets the pre-specified target. � 
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As noted earlier, the primary regulatory concern in formal corrective action testing is false 
declarations of remedial success. If groundwater is truly contaminated above a regulatory standard yet a 
statistical test result indicates the concentrations are no longer so elevated, then on-going contamination 
has been missed and the remedial process should not be exited. Statistically, this idea translates into a 
desire to minimize the corrective action false positive rate (�). False positives in corrective action are 
precisely those decisions where the true concentration mean is falsely identified to be below the 
regulatory standard, when in fact it still exceeds the standard. 

Constructing confidence interval tests by fixing a low target false positive rate is straightforward. 
All of the confidence interval tests presented in Chapter 21 can be calibrated for choice of �. What is 
not straightforward is how best to incorporate statistical power in corrective action. As with any 
confidence interval test, selecting a low � when the sample size is small typically results in a confidence 
limit with low power. Power under corrective action monitoring represents the probability that the upper 
confidence limit [UCL] will fall below the fixed standard when in fact the true population mean is also 
less than the standard. Facilities undergoing remediation clearly have an interest in demonstrating the 
success of those clean-up efforts. They therefore may want to maximize the power of the confidence 
interval tests during corrective action, under the constraint that � must be kept low. 

What statistical power criteria might a facility reasonably define in corrective action testing? 
Because of the orders of magnitude range found among various GWPS, a risk ratio approach similar to 
what is suggested in Section 22.1.1; only in this case, the target ratios (R) are less than one. While a true 
mean at a level of R = 0.9 times a given standard might be declared in compliance very infrequently, one 
at R = 0.5 times or R = 0.25 times the standard should meet the compliance requirements much more 
often. By using a consistent risk ratio across a variety of constituents, absolute decreases in the mean 
concentration are consistent with an assumed level of risk. 

Unlike the risk ratio method detailed for compliance/assessment monitoring, where power was pre-
specified but a combination of the false positive rate (�) and sample size (n) might be varied to meet that 
power level, in corrective action both power and � are likely to be pre-specified (power by the facility 
and � by the regulatory authority). The remaining component is how large a sample size is needed to 
attain the desired level of power, given a pre-specified false positive rate (�). 

The normal distribution can be used to estimate sample size requirements for such risk ratios, 
given a specific false positive rate (α) and desired level of power (1–β). There is likely to be uncertainty, 
however, in the degree of sample variation, as expressed by the CV. Since the constituents in a 
contaminated aquifer may be modified by remedial actions, it can be difficult to estimate future 
variability (and the CV) from pre-treatment data. In some situations, a decrease in the mean over time 
might be paralleled by a decrease in total variation. If proportional, the CV would remain relatively 
constant. However, the CV could decrease or increase depending on aquifer conditions, constituent 
behavior, etc. The best that can be recommended is to develop an estimate of the expected future CV 
under conditions of aquifer stability. 

As with compliance/assessment testing, future year estimates of the CV could be developed from 
the accumulated previous years’ data. Sample sizes necessary to meet specific power targets (1–β) can 
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then be generated from the following approximate equation, where R = fractional risk ratio (less than 
1.0), (1–α) is the desired confidence level, and VC

~
 = estimated coefficient of variation: 

 ( ) ( )[ ]2

1,11,1 1ˆ RVCttRn nn −⋅+⋅= −−−− βα  [22.3] 

Since n appears on both sides of equation [22.3], it has to be solved iteratively for trial-and-error choices 
of n, making it difficult to calculate without a proper computing environment. Tables 22-4 to 22-6 in  
Appendix D provide requisite sample sizes (n) based on equation [22.3] for three specific risk ratios (R 
= .75, .50, and .25) over a variety of inputs of α, β, and CV. 

These tables can be consulted when designing a remedial program, especially when determining a 
sampling frequency adequate for generating the minimally needed sample size over a specific period of 
time. For example, to detect a drop in the true mean down to 0.75 × GWPS (i.e., R = 0.75) with 80% 
power when CV = 0.6, Table 22-4 in Appendix D indicates that a minimum of n = 16 observations are 
needed to have a false positive rate (�) no greater than 10%. Demonstrating such a reduction over the 
next two years might then require the collection of 8 measurements per year (or two per quarter) from 
the compliance well involved. 2 

While Tables 22-4 to 22-6 in Appendix D identify the sampling requirements needed to 
simultaneously meet pre-specified targets for power (1–�) and the false positive rate (�), they come with 
some limitations. First, many of the minimum sample sizes are prohibitively large when sample 
variation as measured by the CV is substantial. Proving the success of any remedial program will be 
difficult when the compliance data exhibit significant relative variability. Less sampling is required to 
demonstrate a more substantial concentration drop below the compliance standard than to demonstrate a 
slight decrease (e.g., compare the sample sizes for R = 0.75 to R = 0.25). This fact mirrors the statistical 
truth in both detection and compliance/assessment monitoring that highly contaminated wells are more 
easily identified (and require fewer observations to do so) than are only mildly contaminated wells. 

Another limitation of equation [22.3] is that it assumes all n measurements are statistically 
independent. This assumption puts practical limits on the amount of sampling at a compliance well that 
can reasonably be achieved over a specific time period. Samples obtained too frequently may be 
autocorrelated and thus violate statistical independence. Minimum sample sizes do not apply to data 
exhibiting an obvious trend, and are appropriate only when the aquifer is in a relatively steady-state. 
Alternate methods to construct confidence bands around trends are presented in Chapter 21. However, 
equation [22.3] cannot be used to plan sample sizes in this setting. Finally, Tables 22-4 to 22-6 in 
Appendix D are based on an assumption of normally-distributed data. Although non-normal data sets 
might be approximated to some degree by the range of CVs considered, more sophisticated methods 
might be needed to compute sample size requirements for such data. This might entail consultation with 
a professional statistician. 

                                                 

2 A slightly more approximate direct calculation using the standard normal distribution instead of Student t-values will also 

provide the needed sample size estimate as: ( ) ( )[ ]2

11 1ˆ RVCzzRn −⋅+⋅= −− βα .   The recommended sample size in 

the example above is rounded to n = 15 using the z-normal equation.    The estimate can be improved and made more 
conservative by adding an additional sample. 
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Suppose elevated levels of specific conductance (µmho) shown in the table below must be 
remediated at a hazardous waste facility. If the clean-up standard has been set at L = 1000 µmho, at what 
point should remediation efforts be declared a success for the two compliance well data in the table 
below? Assume that the risk of false positive error needs to be no greater than α = 0.05 at either well. 
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Step 1. First consider the data in well GW-12. A time series plot of the most recent 20 specific 
conductance values is shown in Figure 22-3. This plot indicates a fairly linear downward 
trend, suggesting that a trend line should be fit to the data, along with an upper confidence 
bound around the trend. 
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Step 2. Fit a regression line of specific conductance versus sampling date using the formulas in 
Section 21.3. The equation of estimated trend line shown on Figure 22-4 is: 

 ty ⋅−= 36.396790360ˆ  

Step 3. Examine the trend residuals. A probability plot of the residuals is given in Figure 22-5. Since 
this plot is reasonably linear and the Shapiro-Wilk test statistic for these residuals (SW = 
.9622) is much larger than the 1% critical point for n = 20 (sw.01, 20 = 0.868), there is no reason 
to reject the assumption of normality. 
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 Also plot the residuals against sampling date (Figure 22-6). As no unusual pattern is evident 
on this scatter plot (e.g., trend, funnel-shape, etc.) and the variability of the residuals is 
reasonably constant across the range of sampling dates, the key assumptions of the linear 
regression appear to be satisfied. 

Step 4. Since the false positive error rate must be no greater than 5%, use α = .05 when constructing 
an upper confidence band around the regression line. Using the formulas in Section 21.3 at 
each observed sampling date, both a 95% upper confidence band and a 95% lower confidence 
band are computed and shown in Figure 22-7. Only the upper confidence band is needed to 
measure the success of the remedial effort.   Note that the formula uses an F-confidence level 
of 1-� or .95 for a one-sided confidence interval.  The lower 95% confidence band is shown 
for illustrative purposes and the confidence level between the upper and lower bands is 
actually 90%. 
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Step 5. Determine the first time point at which the remediation effort should be judged successful. In 
Figure 22-7, the upper confidence band drops below the clean-up standard of L = 1000 µmho 
in the second quarter of 1992, so well GW-12 could be declared in compliance at this point. 

Step 6. Now consider compliance well GW-13. A time series plot of the specific conductance 
measurements in this case (Figure 22-8) shows an initially steep drop in conductance level, 
followed by a more or less stable mean for the rest of the sampling record. The best strategy in 
this situation is to remove the four earliest measurements and then compute an upper 
confidence limit on the remaining values. 
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Step 7. Before computing an upper confidence limit, test normality of the data. If the entire sampling 
record is included, the Shapiro-Wilk test statistic is only .5804, substantially below the 1% 
critical point with n = 23 of sw.01,23 = 0.881, indicating a non-normal pattern. Certainly, a 
transformation of the data could be attempted. But simply removing the first four values 
(representing the steep drop in conductance levels) gives a Shapiro-Wilk statistic equal to 
.9536, passing the normality test easily. Further confirmation is found by comparing the 
probability plots in Figures 22-9 and 22-10. In the first plot, all the data from GW-13 are 
included, while in the second the first four values have been removed. 
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Step 8. Another instructive comparison is to compute the upper confidence limits on the same data 
with and without the first four values. Consider the initial 8 conductance measurements, 
representing the first two years of quarterly data under corrective action. If all 8 values are 
used to compute the upper 95% confidence bound (taking 95% so that α = .05) and the 
formula for a confidence interval around a normal mean from Section 21.1 is applied, the limit 
becomes: 

 UCL.95 = x + t1− α ,n−1

s
n

= 901.75 +1.8946 ×
635.7126

8
= 1327.6 µmho  

 While this limit exceeds the clean-up standard of L = 1000 �mho, the same limit excluding the 
first four measurements is easily below the compliance standard: 

 UCL.95 = 451.75 + 2.3534 ×
54.0085

4
= 515.3 µmho  
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Step 9. Based on the calculation in Step 8, the clean-up standard is certainly met by early 1990 at 
GW-13. However, it is also instructive to examine the confidence bounds on larger sets of data 
from the stable portion of the sampling record. For instance, if the initial 4 measurements are 
excluded and then the next 8 values are used, the upper 95% confidence bound is: 

 UCL.95 = 478.75 +1.8946 ×
68.3452

8
= 524.5 µmho  

 If all of the last 19 specific conductance values are used, a similar 95% confidence bound 
becomes: 

 UCL.95 = 503.158 +1.7341×
74.2760

19
= 532.7 µmho  

Step 10. Both of the limits in Step 9 easily meet the clean-up standard of L = 1000 µmho. However, the 
amount of data used in the latter case is more than double than that of the former, which can 
impact the relative statistical power of the upper confidence limit for detecting decreases 
below the fixed standard. Given that the specific conductance seems to level off at close to 
500 µmho, or one-half the clean-up standard, and given that the CV is approximately equal to 
.15, Table 22-5 in Appendix D (looking under CV = 0.2) indicates that at least 6 
measurements are needed to have a 95% chance of detecting a drop in conductance level to 
half the standard. So in this example, both UCLs are sufficiently powerful for detecting such a 
decrease. � 
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For fixed standards which represent an upper percentile or maximum, the proper comparison in 
compliance/assessment monitoring utilizes the lower confidence limit around an upper percentile tested 
against the GWPS.  In formal corrective action testing, the appropriate comparison employs an upper 
confidence limit around an upper percentile. Parametric and non-parametric confidence intervals around 
percentiles are presented in Chapter 21. 

While the basic comparison is similar to confidence intervals around a mean, two points should be 
noted. First, any numerical standard identified as a maximum concentration 'not to be exceeded' needs to 
be treated statistically as an upper percentile. The reason is that while every observed data set has a finite 
maximum, there is no way to estimate the confidence bounds around the maximum of a continuous 
population. The true ‘maximum’ is always positive infinity, illustrating a point of breakdown between 
mathematical models and physical reality. Nonetheless, confidence limits around an upper 90th to 99th 
percentile can be used as a close approximation to a maximum or some limit likely to only be 
infrequently exceeded. 

Secondly, computing statistical power for an interval around an upper percentile is similar to but 
not quite the same as, statistical power for an interval around the mean. Statistical power for a 
compliance/assessment test of the upper 90th percentile is derived by considering whether more than 
10% of all the population measurements exceed the GWPS.  If so, the 90th percentile must also exceed 
the standard.  In corrective action testing, the equivalent question is whether less than 10% of the 
measurements exceed the GWPS.   In that case, the true 90th percentile must also be less than the 
standard. 

Statistically, each observation is set equal to 0 or 1 depending on whether the measured 
concentration is less than or greater than the fixed standard. Then the percentage of measurements 
exceeding the GWPS is given by the average of the set of zeros and ones. In other words, the problem is 
similar to estimating an arithmetic mean. 

The similarity ends, however, when it comes to setting power targets.  For mean-based  
evaluations, power at true mean concentration levels is equivalent to a fixed multiple or fraction of the 
GWPS (e.g., 1.5 or 2 times the standard; 0.25 or 0.5 times the standard).  But for upper percentile power, 
the alternative hypothesis is defined in terms of the actual percentage of measurements either exceeding 
the standard in compliance/assessment monitoring (e.g., 20% or 30% instead of the null hypothesis 
value of 10%) or exceeding the clean-up level in corrective action monitoring (e.g., 2% or 5% instead of 
10%). In both hypothesis frameworks, the actual fraction of measurements above the standard can be 
denoted by p. Furthermore, the power formulas rely on a normal approximation to the binomial 
distribution.  If p is the probability that an individual observation exceeds the GWPS, and p0 is the 
percentage of values exceeding the GWPS when the (1–p0)th upper percentile concentration equals the 
standard, the quantity: 

 
  
Z = p − p0( ) p0 1− p0( ) n  [22.4] 
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has an approximately standard normal distribution under either the compliance/assessment null 
hypothesis p � p0 or the corrective action null hypothesis  p � p0. 

Under the compliance/assessment alternative hypothesis (HA), the true fraction exceeding the 
standard is greater than the null value (p = p1 > p0).  With the corrective action alternative hypothesis, the 
true fraction is less than the null value (p = p1 < p0).   p1 can be specified as a multiple of p0, say p1 = 
k�p0, where k can either be greater or less than one. Then it is possible to compute the sample size (n) 
necessary to simultaneously achieve a pre-specified level of power (1–β) and false positive rate (α) with 
the equation: 

 

  

n =
z1−α p0 1− p0( )+ z1− β kp0 1− kp0( )

k − 1( )p0

�

�

	
	




�

�
�

2

 [22.5] 

where zc represents the cth percentile from a standard normal distribution. 

Equation [22.5] can be used for designing and constructing confidence interval tests around upper 
percentiles in both compliance/assessment and corrective action monitoring. However, the interpretation 
and practical approach to its use differ depending on the stage of monitoring. 
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In compliance/assessment monitoring, the alternative hypothesis (i.e., that the well is contaminated 
above the compliance standard) is expressed in terms of the relative percentage of concentration values 
that will exceed the GWPS compared to an uncontaminated well. To illustrate, if the compliance 
standard represents the 95th percentile so that no more than p0 = 5% of the individual measurements 
exceed this level, the percentage exceeding under the alternative hypothesis might be taken as p1 = 2 × p0 
= 10%. Then a power level would be targeted so that exceedances of the standard occurring as frequently 
as p1 would be identified with a probability equal to (1–β). 

If n measurements are used to construct a lower confidence bound on the upper percentile (1–p0) of 
interest (e.g., the 95th), there will be a (1–β) × 100% chance of showing that the lower confidence limit 
exceeds the GWPS when in fact at least kp0 × 100% of the measurements actually exceed the standard.  
Furthermore, equation [22.5] also implies that the LCL will falsely exceed the GWPS with probability α. 
That is, when the true percentage of measurements exceeding the standard is actually p0 or less, the test 
will identify a compliance violation α  × 100% of the time. 

Because EPA’s primary concern in compliance/assessment monitoring is having adequate 
statistical power to detect groundwater contaminated above the regulatory standard, a high power level 
(1–�) should first be pre-specified. Then � can be varied in equation [22.5] until the resulting minimum 
sample size (n) matches the available sample or a feasible sample size for future sampling is found. In 
other words, power should always be kept high (e.g., at least 70-75%), even at the expense of the false 
positive rate (�). However, there may be sites where a feasible sample size can be calculated such that 
both � and � are minimized. 
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Values of n for various choices of power level (1–β), Type I error rate (α), and upper percentile (1–
p0) are tabulated in Table 22-7 in Appendix D. These can be used to maintain a specific level of power 
when employing a confidence interval around an upper percentile in compliance/assessment monitoring. 
The percentiles covered in this table include the 90th, 95th, 98th, and 99th. Levels of statistical power (1–
β) provided include .50, .60, .70, .80, .90, .95, and .99, while the false positive rate (α) ranges from .20 
down to .01.  Specific cases not covered by Table 22-7 in Appendix D can be computed directly with 
equation [22.5]. 

� ��0��������
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Suppose a compliance limit for the pressure under which chlorine gas is stored in a moving 
container (for instance, a rail car) is designed to protect against acute, short-term exposures due to 
ruptures or leaks in the container. If the compliance limit represents an upper 90th percentile of the 
possible range of pressures that might be used to seal a series of such containers, how many containers 
should be sampled/tested to ensure that if in fact 30% or more of the container pressures exceed the 
limit, violation of the standard will be identified with 90% probability and exhibit only a 5% chance of 
false positive error? 

� ���5�����

Step 1. Since the compliance limit on chlorine gas pressure represents the 90th percentile, at most 
10% of the container pressures should exceed this limit under normal operations. In statistical 
notation, p0 = 0.10 and (1–p0) = 0.90.  If there is a problem with the process used to seal the 
containers and 30% of the pressures instead exceed the limit, this amounts to considering a 
multiple of k = 3 times the nominal exceedance amount. 

Step 2. Since a violation of the pressure standard by at least 3p0 or 30% needs to be identified with 
90% probability, the target power is (1–β) = 0.90. Also, the chance of constructing a lower 
confidence limit on the true 90th percentile gas pressure that falsely identifies an exceedance 
of the standard must be kept to α = .05. 

Step 3. Looking in Table 22-7 in Appendix D under the 90th percentile and k = 3, the necessary 
minimum sample size is n = 30. Thus, 30 similarly-sealed containers should be tested for gas 
pressure so that a confidence interval around the 90th percentile can be constructed on these 
30 measurements using either the parametric or non-parametric formulas in Chapter 21. � 
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Equation [22.5] can also be used in formal corrective action testing. In this setting, an upper 
confidence limit [UCL] around an upper percentile is of interest and the false positive rate (�) needs to 
be minimized to ensure a low probability of falsely or prematurely declaring remedial success. In 
practice, � should be pre-specified to a low value. Then, different values for power (1–β) can be input 
into equation [22.5] until the resulting minimum sample size (n) either matches the available amount of 
sampling data or is feasible to collect in future sampling. 

Once the minimum sample size is computed and these n measurements are used to construct a 
UCL on the upper percentile (1–p0) of interest (e.g., the 95th), there will be a (1–β) × 100% chance that 
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the UCL will be less than the clean-up standard when in fact no more than kp0 × 100% of the 
measurements actually exceed the standard. For instance, if k = 1/2, (1–β) will be the power of the test 
when in fact half as many of the measurements exceed the standard as are nominally allowed. 

Equation [22.5] also implies that the UCL will falsely drop below the clean-up standard with 
probability α. That is, when the true percentage of measurements exceeding the standard is actually p0 or 
greater — indicating that the clean-up standard has not been met — the test will still declare the 
remedial effort successful α × 100% of the time. 

Values of n for various choices of power level (1–β), Type I error rate (α), and upper percentile (1–
p0) are tabulated in Table 22-8 in Appendix D. This table can be used to determine or adjust the feasible 
power level based on a pre-specified � when employing a confidence interval around an upper percentile 
in corrective action. Note that the minimum sample sizes in Table 22-8 of Appendix D are generally 
quite large, especially for small error rates (α). Because of the regulatory interest in minimizing the risk 
of prematurely exiting remediation, statistical comparisons in corrective action are likely to initially have 
fairly low power. As the clean-up process continues, enough additional data can be accumulated to 
adequately raise the odds of declaring the remediation a success when in fact it is. 

� ��0��������
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Suppose excessive nitrate levels must be remediated in a rural drinking water supply. If the clean-
up standard for infant nitrate exposure represents an upper 95th percentile of the concentration 
distribution, what sample size (n) should be selected to ensure that if true nitrate levels drop below the 
clean-up standard, the remediation effort will be judged successful with at least 80% probability?  

���5�����

Step 1. Examining Table 22-8 in Appendix D under the 95th percentile and power = (1–β) = .80, a 
choice of n cannot be made until two other statistical parameters are fixed: the false positive 
rate (α) and the relative fraction of exceedances (p). The false positive rate governs the 
likelihood that the upper confidence limit on nitrate will be below the clean-up standard, even 
though more than 5% of all nitrate measurements are above the compliance standard (so that 
the true 95th percentile for nitrate still exceeds the clean-up criterion). The relative fraction of 
exceedances (p) sets the true percentage of individual nitrate concentrations that exceed the 
clean-up standard under the alternative hypothesis (HA); that is, what fraction of nitrate values 
are exceedances when the clean-up standard is truly met. 

 Unfortunately, no matter what choices of α and p are selected in Table 22-8 of Appendix D, 
the smallest required sample size is n = 55, when α = .20 and p = .25. Even if it is practical 
and affordable to test 55 samples of groundwater for nitrate, the chance of falsely declaring the 
remediation effort a success will still be 20%. To cut that probability in half to α = .10, n = 99 
samples needs to be tested. 
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Step 2. To lessen the required sampling effort, consider the alternatives. Lower sample sizes are 
needed if the percentile of interest is less extreme, for instance if the clean-up standard 
represents a 90th percentile instead of the 95th. In this case, only n = 48 samples are needed 
for 80% power and a 10% false positive rate with p = .25. Of course, more frequent 
exceedances of the compliance limit are then allowed (i.e., 10% versus 5% of the largest 
nitrate concentrations). 

 Another less desirable option is to raise the α level of the test. This raises the risk of falsely 
declaring the remediation effort to be a success. One could also lower p. At p = .25 for the 
95th percentile, 80% power is guaranteed only when the true nitrate exceedance frequency is 
one-fourth the maximum allowable rate--- i.e., when the true rate of exceedances is .25 × 5% = 
1.25%. Exceedance rates greater than this will be associated with less than 80% power. But 
while lowering p and keeping other parameters constant will indeed decrease n, it also has the 
effect of requiring a very low actual exceedance rate before the power of the test will be 
sufficiently high. At p = .10 for the 95th percentile, for instance, the true exceedance rate then 
needs to be only .10 × 5% = 0.5% to maintain the same level of power. 

 The final option is to lower the desired power. Power in this setting is the probability that the 
UCL on nitrate will be below the clean-up standard, when the groundwater is no longer 
contaminated above the standard. When the true nitrate levels are sufficiently low to meet the 
compliance standard, demonstrating this fact will only occur with high probability (i.e., high 
power) when the sample size is fairly large. By taking a greater chance that the status of the 
remediation will be declared inconclusive (i.e., when the UCL still exceeds the clean-up 
standard even though the true nitrate levels have dropped), power could be lowered to 70% or 
60% for instance, with a corresponding reduction in the required n. To illustrate, if the power 
is set at 60% instead of 80% for the 95th percentile and the false positive rate is set at α = .10, 
the required sample size would drop from n = 99 to n = 68. 

Step 3. In many groundwater contexts, the minimum sample sizes of Table 22-8 in Appendix D may 
seem excessive. Certainly, the sampling requirements associated with upper percentile clean-
up standards are substantially greater than those needed to test mean-based standards. 
However, remediation efforts often last several years, so it may be possible to accumulate 
larger amounts of data for statistical use than is possible in, say, detection or compliance 
monitoring. In any event, it is important to recognize how the type of standard and the 
statistical parameters associated with a confidence interval test impact the amount of data 
necessary to run the comparison. Each parameter should be assessed and interpreted in the 
planning stages of an analysis, so that the pros and cons of each choice can be weighed. 

Step 4. Once a sample size has been selected and the data collected, either a parametric or non-
parametric upper confidence limit should be constructed on the nitrate measurements and 
compared to the clean-up standard. � 


